2,568 research outputs found

    The computational neurology of movement under active inference

    Get PDF
    We propose a computational neurology of movement based on the convergence of theoretical neurobiology and clinical neurology. A significant development in the former is the idea that we can frame brain function as a process of (active) inference, in which the nervous system makes predictions about its sensory data. These predictions depend upon an implicit predictive (generative) model used by the brain. This means neural dynamics can be framed as generating actions to ensure sensations are consistent with these predictions-and adjusting predictions when they are not. We illustrate the significance of this formulation for clinical neurology through simulating a clinical examination of the motor system; i.e. an upper limb coordination task. Specifically, we show how tendon reflexes emerge naturally under the right kind of generative model. Through simulated perturbations, pertaining to prior probabilities of this model's variables, we illustrate the emergence of hyperreflexia and pendular reflexes, reminiscent of neurological lesions in the corticospinal tract and cerebellum. We then turn to the computational lesions causing hypokinesia and deficits of coordination. This in silico lesion-deficit analysis provides an opportunity to revisit classic neurological dichotomies (e.g. pyramidal versus extrapyramidal systems) from the perspective of modern approaches to theoretical neurobiology-and our understanding of the neurocomputational architecture of movement control based on first principles

    Screened hybrid functional applied to 3d^0-->3d^8 transition-metal perovskites LaMO3 (M=Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties

    Full text link
    We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional scheme applied to the perovskite family LaMO3 (M=Sc-Cu) and discuss the role of the mixing parameter alpha (which determines the fraction of exact Hartree-Fock exchange included in the density functional theory (DFT) exchange-correlation functional) on the structural, electronic, and magnetic properties. The physical complexity of this class of compounds, manifested by the largely varying electronic characters (band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings, structural distortions (cooperative Jahn-Teller like instabilities), as well as by the strong competition between localization/delocalization effects associated with the gradual filling of the t_2g and e_g orbitals, symbolize a critical and challenging case for theory. Our results indicates that HSE is able to provide a consistent picture of the complex physical scenario encountered across the LaMO3 series and significantly improve the standard DFT description. The only exceptions are the correlated paramagnetic metals LaNiO3 and LaCuO3, which are found to be treated better within DFT. By fitting the ground state properties with respect to alpha we have constructed a set of 'optimum' values of alpha from LaScO3 to LaCuO3: it is found that the 'optimum' mixing parameter decreases with increasing filling of the d manifold (LaScO3: 0.25; LaTiO3 & LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3: 0.05; LaNiO3 & LaCuO3: 0). This trend can be nicely correlated with the modulation of the screening and dielectric properties across the LaMO3 series, thus providing a physical justification to the empirical fitting procedure.Comment: 32 pages, 29 figure

    Magnetosubband and edge state structure in cleaved-edge overgrown quantum wires

    Full text link
    We provide a systematic quantitative description of the structure of edge states and magnetosubband evolution in hard wall quantum wires in the integer quantum Hall regime. Our calculations are based on the self-consistent Green's function technique where the electron- and spin interactions are included within the density functional theory in the local spin density approximation. We analyze the evolution of the magnetosubband structure as magnetic field varies and show that it exhibits different features as compared to the case of a smooth confinement. In particularly, in the hard-wall wire a deep and narrow triangular potential well (of the width of magnetic length lBl_B) is formed in the vicinity of the wire boundary. The wave functions are strongly localized in this well which leads to the increase of the electron density near the edges. Because of the presence of this well, the subbands start to depopulate from the central region of the wire and remain pinned in the well region until they are eventually pushed up by increasing magnetic field. We also demonstrate that the spin polarization of electron density as a function of magnetic field shows a pronounced double-loop pattern that can be related to the successive depopulation of the magnetosubbands. In contrast to the case of a smooth confinement, in hard-wall wires the compressible strips do not form in the vicinity of wire boundaries and spatial spin separation between spin-up and spin-down states near edges is absent.Comment: 9 pages, submitted to Phys. Rev.

    Time-Dependent Density-Functional Theory for Trapped Strongly-Interacting Fermionic Atoms

    Get PDF
    The dynamics of strongly interacting trapped dilute Fermi gases (dilute in the sense that the range of interatomic potential is small compared with inter-particle spacing) is investigated in a single-equation approach to the time-dependent density-functional theory. Our results are in good agreement with recent experimental data in the BCS-BEC crossover regime. It is also shown that the calculated corrections to the hydrodynamic approximation may be important even for systems with a rather large number of atoms.Comment: Resubmitted to PRA in response to referee's comments. Abstract is changed. Added new figure

    Hysteresis and spin phase transitions in quantum wires in the integer quantum Hall regime

    Full text link
    We demonstrate that a split-gate quantum wire in the integer quantum Hall regime can exhibit electronic transport hysteresis for up- and down-sweeps of a magnetic field. This behavior is shown to be due to phase spin transitions between two different ground states with and without spatial spin polarization in the vicinity of the wire boundary. The observed effect has a many-body origin arising from an interplay between a confining potential, Coulomb interactions and the exchange interaction. We also demonstrate and explain why the hysteretic behavior is absent for steep and smooth confining potentials and is present only for a limited range of intermediate confinement slopes.Comment: submitted to PR

    Superheating fields of superconductors: Asymptotic analysis and numerical results

    Full text link
    The superheated Meissner state in type-I superconductors is studied both analytically and numerically within the framework of Ginzburg-Landau theory. Using the method of matched asymptotic expansions we have developed a systematic expansion for the solutions of the Ginzburg-Landau equations in the limit of small κ\kappa, and have determined the maximum superheating field HshH_{\rm sh} for the existence of the metastable, superheated Meissner state as an expansion in powers of κ1/2\kappa^{1/2}. Our numerical solutions of these equations agree quite well with the asymptotic solutions for κ<0.5\kappa<0.5. The same asymptotic methods are also used to study the stability of the solutions, as well as a modified version of the Ginzburg-Landau equations which incorporates nonlocal electrodynamics. Finally, we compare our numerical results for the superheating field for large-κ\kappa against recent asymptotic results for large-κ\kappa, and again find a close agreement. Our results demonstrate the efficacy of the method of matched asymptotic expansions for dealing with problems in inhomogeneous superconductivity involving boundary layers.Comment: 14 pages, 8 uuencoded figures, Revtex 3.

    Constraint-based, Single-point Approximate Kinetic Energy Functionals

    Full text link
    We present a substantial extension of our constraint-based approach for development of orbital-free (OF) kinetic-energy (KE) density functionals intended for the calculation of quantum-mechanical forces in multi-scale molecular dynamics simulations. Suitability for realistic system simulations requires that the OF-KE functional yield accurate forces on the nuclei yet be relatively simple. We therefore require that the functionals be based on DFT constraints, local, dependent upon a small number of parameters fitted to a training set of limited size, and applicable beyond the scope of the training set. Our previous "modified conjoint" generalized-gradient-type functionals were constrained to producing a positive-definite Pauli potential. Though distinctly better than several published GGA-type functionals in that they gave semi-quantitative agreement with Born-Oppenheimer forces from full Kohn-Sham results, those modified conjoint functionals suffer from unphysical singularities at the nuclei. Here we show how to remove such singularities by introducing higher-order density derivatives. We give a simple illustration of such a functional used for the dissociation energy as a function of bond length for selected molecules.Comment: 16 pages, 9 figures, 2 tables, submitted to Phys. Rev.

    Thermal energy storage in a confined aquifer: Experimental results

    Get PDF
    This is the published version. Copyright 1979 American Geophysical UnionTo aid in testing the idea of storing thermal energy in aquifers, an experiment was performed by Auburn University in which 54,784 m3 of water was pumped from a shallow supply aquifer, heated to an average temperature of 55°C, and injected into a deeper confined aquifer where the ambient temperature was 20°C. After a storage period of 51 days, 55,345 m3 of water were produced from the confined aquifer. Throughout the experiment, which lasted approximately 6 months, groundwater temperatures were recorded at six depths in each of 10 observation wells, and hydraulic heads were recorded in five observation wells. In order to prevent errors due to thermal convection, most of the observation wells recording temperature had to be backfilled with sand. During the 41-day production period, the temperature of the produced water varied from 55° to 33°C, and 65% of the injected thermal energy was recovered. At no time was an appreciable amount of free thermal convection observed in the storage formation. The dominant heat dissipation mechanisms appeared to be hydrodynamic thermal dispersion and possible mixing of cold and hot water induced by clogging and unclogging of the injection-production well. On the basis of laboratory and field studies, it was concluded that clogging of the injection well, which constituted the major technical problem during the experiment, was caused by the freshwater-sensitive nature of the storage aquifer. Due to the relatively low concentration of cations in the supply water, clay particles would swell, disperse, and migrate until they became trapped in the relatively small pores connecting the larger pores. Surging the pump and back washing the injection well would dislodge the clogging particles and temporarily improve the storage formation permeability. The phenomenon seems largely independent of temperature because it was reproduced in the laboratory with unheated water. It may, however, depend on pore velocity. Future research should be directed toward procedures for selecting storage aquifers that will have minimal susceptibility to clogging and other geochemical problems. Procedures for overcoming such difficulties are needed also because clogging and related phenomena will be more the rule than the exception. Designing an aquifer thermal storage system for maximum energy recovery would involve selecting an appropriate aquifer, analyzing the effects of hydrodynamic thermal dispersion and thermal convection if it is predicted to occur, anticipating geochemical problems, designing the optimum supply-injection-production well configuration and injecting a sufficiently large volume of heated water to realize economies of scale related to increasing volume-surface area ratio

    Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations

    Full text link
    The total energies and the spin states for atoms and their first ions with Z = 1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable, are treated as ensemble v- representable with fractional occupations of the Kohn-Sham system. A newly developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab-initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g. in lanthanides. The spin values calculated ab-initio fit the experiment for most atoms and are almost unaffected by the choice of the xc-functional. Among the systems with incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the result is found to be stable with respect to small variations in the xc-approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a non-local nature, to accurately describe such systems. PACS numbers: 31.15.
    corecore