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PSYCHOPHYSIOLOGICAL PROFILES OF SELF-TALK

Impact Statement

Self-talk is a psychological skill that benefits motor performance by controlling and organizing 

performers’ thoughts. This is the first study to adopt a multi-measure psychophysiological approach 

for the investigation of self-talk during a complex and ecologically valid motor task such as golf 

putting. In doing so, it offers a psychophysiological foundation of the differential effects of the effects 

of this cognitive technique on skill execution and opens a new avenue for researchers in sport 

psychology and motor skills. 
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PSYCHOPHYSIOLOGICAL PROFILES OF SELF-TALK

1 Mind and body: Psychophysiological profiles of instructional and motivational self-talk

Our stream of thoughts can be accompanied by covert verbalisations known as self-talk. Self-

talk acts as an accelerator to thinking and understanding (Vygotsky, 1978), and is especially prevalent 

during the acquisition of motor skills (Hardy, Gammage, & Hall, 2000; Masters, 1993). It is common 

for performers to recite instructional self-talk to guide the steps for successful skill execution (Hardy, 

Comoutos, & Hatzigeorgiadis, 2018). In addition, to regulate arousal, support confidence, and 

motivational drive, individuals may also verbalize a series of self-motivating statements (motivational 

self-talk; Hardy et al., 2018). Meta-analytic evidence indicates that both instructional and motivational 

self-talk benefit performance (Hatzigeorgiadis et al., 2011). However, for motor tasks placing a 

premium on precision, instructional self-talk seems to have a relative advantage over motivational 

self-talk (Theodorakis, Weinberg, Natsis, Douma, & Kazakas, 2000), as shown by behavioral meta-

data revealing larger performance benefits (dinstructional = .83 vs. dmotivational = .22; Hatzigeorgiadis et al., 

2011) and more consistent movement kinematics (Abdoli, Hardy, Riyahi, & Farsani, 2018). 

While the effects of self-talk on motor performance and skill execution are well understood at 

the behavioral level, the self-talk literature lacks both data and a guiding model highlighting detailed 

multifaceted mechanistic pathways, such as neurophysiological adaptations that explain the processes 

beyond performance related markers of skill outcome (e.g., missed or holed golf putts). To address 

this shortcoming, we present and test the first psychophysiological model of self-talk and motor skill 

execution. This model is grounded on a unique integration of both self-talk and psychophysiological 

literatures. For instance, we draw from Hardy, Tod, and Oliver’s (2009) self-talk framework 

highlighting broad cognitive (e.g., information processing), motivational (e.g., increased effort), 

behavioral (e.g., superior technical kinematics/form), and affective (e.g., anxiety control) mediatory 

pathways. Precise psychophysiological predictions of our model are based on evidence from 

investigations of related cognitive constructs, such as conscious motor processing (e.g., Masters & 

Maxwell, 2008) and motivation (e.g., Harmon-Jones, Gable, Peterson, 2010). Given their different 

effects on performance, we propose that instructional and motivational self-talk have a different 
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PSYCHOPHYSIOLOGICAL PROFILES OF SELF-TALK

neurophysiological basis and therefore influence motor skill control via different psychophysiological 

mechanisms. 

1.1 Instructional self-talk  

In guiding the steps for successful skill execution by steering individuals’ attention to the 

correct stimuli at appropriate moments (Theodorakis et al., 2000), instructional self-talk represents a 

conscious top-down process acting on the motor system (Hardy, 2006). Operationally, this appears 

comparable to the conscious processing of movement related instructions (Mullen & Hardy, 2010). 

Indeed, like instructional self-talk, training regimes fostering the conscious processing of movements 

can produce faster skill acquisition at the initial stages of motor learning, compared to less explicit 

forms of training (e.g., Hardy, Mullen & Jones, 1996; Masters, 1992). Therefore, we hypothesize that 

compared to motivational self-talk the use of instructional self-talk will, at the initial stages of 

learning, result in better technique. In the case of golf putting, this could manifest as greater forearm 

muscle activity at and immediately after the putter-ball impact to reflect acceleration through the 

swing, and reduced lateral clubhead acceleration to reflect reduced risk of putts being pushed or 

pulled wide of the hole (Cooke et al., 2010). These variables distinguish experts from novices (Cooke 

et al., 2014). Accordingly, we expect instructional self-talk will promote greater forearm muscular 

activation around impact and reduced lateral club-head acceleration compared to motivational self-

talk. 

Like conscious motor processing, instructional self-talk may also provoke distinct patterns of 

neural activity that help explain its behavioral outcomes. Several electroencephalographic (EEG) 

studies of motor performance have associated EEG alpha activity with conscious motor processing 

(Hatfield et al., 2013; Masters & Maxwell, 2008; Zhu, Poolton, Wilson, Maxwell, & Masters, 2011). 

Alpha has an inhibitory function, whereby greater alpha power (i.e., the magnitude of alpha activity) 

indicates greater inhibition and lower alpha power indicates a greater release from inhibition 

(Klimesch, Sauseng & Hanslmayr, 2007). Alpha connectivity is another EEG derived index 

representing cortico-cortical communication, whereby highly synchronous activity between sites 

reflects strong connectivity and less-synchronous activity reflects weaker connectivity (Lachaux, 

Rodriguez, Marinerie, & Varela, 1999). During the final moments of preparation for action, 
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individuals deemed more likely to plan and control movements consciously (e.g., beginners; 

individuals scoring high in trait movement-related self-consciousness) showed comparatively lower 

left-temporal (e.g., T7) alpha power and stronger alpha connectivity between left-temporal (e.g., T7) 

and the frontal (e.g., Fz) channels than their less likely counterparts (Hatfield et al., 2013; Gallicchio, 

Cooke, Ring, 2017, 2016; Zhu et al., 2011). Taken together, these results associated conscious motor 

processing with a relative increase in activity (release from inhibition) over the left-temporal region, 

and an increased communication between left-temporal and frontal regions of the cortex. Considering 

the conceptual overlap between instructional self-talk and conscious motor processing (Hatfield et al., 

2013), we hypothesize that the use of instructional self-talk (compared to motivational self-talk) will 

be characterized by decreased left-temporal alpha power and increased left-frontotemporal alpha 

connectivity during movement preparation. 

Finally, additional predictions concerning the neural basis of instructional self-talk were made 

based on neuropsychological models of feedback and feedforward motor control (Ashe et al., 2006; 

Babiloni et al., 2011; Murata & Ishida, 2007). These models suggest that the top-down (feedforward) 

control of actions is linked to the activity of the frontoparietal network, a circuit involving frontal and 

parietal regions. The main function of the frontoparietal network is to integrate frontally generated 

decisions and action plans with parietally generated multi-modal representations based on an 

integration of visual and somatosensory information (see Ashe et al., 2006; Murata & Ishida, 2007). 

When greater top-down control is attained, the network is driven more by frontal regions, while when 

less control is required, execution becomes more sensory-driven and the balance of the network is 

shifted towards parietal regions (Ashe et al., 2006). 

Although this theorizing has yet to be directly tested with EEG data, re-examination of 

previously published evidence provides a foundation for a series of hypotheses. For example, Cooke 

and colleagues (2015) revealed that cortical activity over frontal and central regions increased (i.e., 

less alpha power) in the trials following golf putting movement errors, reflecting increased top-down 

control to correct the error. Moreover, Gentili and colleagues (2015) reported a progressive isolation 

of frontal sites (i.e., weaker frontal connectivity), as participants switched from a bottom-up (feedback 

based) to a top-down (feedforward based) control of movement. Verbalizing movement instructions 
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and engaging in conscious motor processing is an example of top-down control (Hardy, 2006). 

Accordingly, following Ashe and colleagues’ frontoparietal network model, we hypothesize that the 

use of instructional self-talk will encourage top-down control characterized by less frontal and greater 

parietal alpha power, alongside reduced fronto-parietal connectivity. This reflects preferential 

utilization of conscious instructions (i.e., top-down) over more subtle visual and somatosensory (i.e., 

bottom-up) information. 

1.2 Motivational self-talk 

Motivational self-talk is thought to improve performance by nurturing confidence (Hardy, 

2006) and creating psychological activation states that can support increased effort and behavioral 

persistency (cf., Bandura, 1997; Theodorakis et al., 2000). Nevertheless, nearly all the data concerning 

motivational self-talk have been treated it as though it is a unidimensional construct. Corroborating 

our multidimensional stance, Hardy et al.’s (2000) qualitative results revealed that motivational self-

talk is comprised three aspects: arousal, drive, and mastery functions. Motivational arousal self-talk is 

concerned with athletes’ use of self-talk to psych themselves up and regulate their arousal levels. As a 

result, the researchers proposed that arousal oriented self-talk is more relevant for the competition 

setting characterized by pressure and stress than more emotionally neutral contexts (such as the 

acquisition of a fine motor skill in the laboratory). Motivational drive self-talk aids the individual to 

keep striving towards his/her goals with the necessary determination and effort by maintaining 

motivation and effort levels via self-statements that amongst other things provide encouragement. 

Lastly and of greatest relevance for the present study, motivational mastery self-talk helps the 

individual to remain focused on the task at hand (e.g., by clearing his mind of mistakes he has 

committed), bolsters self-confidence, and facilitates effective coping in challenging situations (e.g., 

when confronted with repeated negative mastery experiences at the early stages of motor learning). 

This type of enhanced motivational state epitomized by increased confidence, effort, and behavioral 

persistency, closely resembles what is known as approach motivation enabling action towards a goal 

and is linked to the so-called behavioral activation system (Gray, 1994). In contrast, the behavioral 

inhibition system, which is associated with avoidance-motivation, promotes situational avoidance as 

well as increased attention toward aversive stimuli (Gray, 1994). To distinguish between approach 
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and avoidance motivation, it is common practice to compute asymmetry scores based on frontal EEG 

alpha power: relatively greater left-frontal asymmetry characterizes approach motivation, while 

relatively greater right-frontal activation characterizes avoidance motivation (e.g., Harmon-Jones, 

Gable & Peterson, 2010). Due to the confidence supportive nature of motivational mastery self-talk 

(Hardy, 2006), it is likely that the use of such self-talk encourages approach rather than avoidance 

motivation. Thus, we predicted that using motivational mastery self-talk would be characterized by a 

relative increase in left-frontal cortical activity compared to instructional self-talk. 

As motivational mastery self-talk, used in conjunction with non-physically demanding tasks 

such as fine motor skills, should influence individuals’ attempts to succeed, the cognitive resources 

allocated to the task, and their overall effort and persistence; this form of self-talk will likely be 

characterized by cardiovascular indices of increased mental effort. For example, a large body of 

research has associated increases in mental effort with an increase in heart rate, and reduction in heart 

rate variability (Mulder,1992; Wilson, Smith, & Holmes, 2010;). Accordingly, we predicted that our 

motivational self-talk would elicit greater heart rate and less variability in heart rate during the final 

seconds of motor preparation (i.e., event-related heart rate; Cooke et al., 2014), when compared to 

instructional self-talk. 

1.3 The Present Study

This study investigated a psychophysiological model distinguishing instructional and 

motivational self-talk and their differential effects on motor skill execution. We instructed novice 

golfers to putt golf balls under either instructional self-talk or motivational self-talk. On the one hand, 

we hypothesized that by increasing top-down control of the motor system, instructional self-talk 

would be characterized by EMG and kinematic indices of better technique (greater forearm activation, 

and a slower, straighter swing), greater left-temporal activation to indicate increased conscious 

processing, and a frontoparietal network function shifted towards frontal rather than parietal sites to 

reflect more top-down feedforward control. On the other hand, we hypothesized that by fostering 

approach motivation, motivational self-talk would be characterized by left-frontal asymmetry 

indicative of approach motivation, and cardiovascular changes indicative of increased mental effort. 
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2 Method

2.1 Participants

Participants were 40 (19 male, 21 female), right-handed (Edinburgh Handedness Inventory ≥ 

+70, Oldfield, 1971), golfing novices, aged 26.97 (SD = 4.40) years. Participants were randomly 

allocated to an instructional self-talk or a motivational self-talk group (between-participant factor) and 

completed 80 trials of a golf-putting task. We used novices and a golf putting task based on meta-

analytic evidence showing largest effects sizes for self-talk manipulations involving novel tasks with 

fine-motor requirements (Hatzigeorgiadis et al., 2011) and because EEG can be recorded while 

putting (e.g., Cooke et al., 2014). Our sample size was powered at .80 to detect large between 

participant effects (ηp
2 = . 0.17 in a randomized analysis of variance (ANOVA) and d = .80 in 

between-group t-tests) at the 5% level of significance. All participants had normal/corrected vision, 

refrained from consuming alcohol, drugs (24 hours before), and caffeine (3 hours before), and 

reported more than 6 hours of sleep during the night preceding their participation. Participants 

provided informed consent before taking part and were paid £10 upon completion. The protocol was 

approved by the local research ethics committee. 

2.2 Experimental Task

Participants were asked to putt golf balls (diameter = 4.27 cm) on an artificial flat putting 

surface to a target - adhesive paper marker (diameter = 6 mm) - at a distance of 2.46 m, using a blade-

style putter (length 90 cm). Participants were instructed to putt at their own pace as accurately as 

possible in order get the final position of each ball “as close as possible to the target”. They were 

additionally instructed to rehearse an instructional or motivational self-talk cue (see Supplementary 

Material) immediately before executing the swing. 

2.3 Procedures

Participants completed a 2-hour testing session. Following instruction and instrumentation 

they sat and rested with eyes-closed for one minute followed by eyes-open for one minute while EEG 

was recorded to later adjust frequency bands to the individual alpha peak (IAF, see Bazanova & 

Vernon, 2014; Corcoran, Alday, Schlesewsky, & Bornkessel-Schlesewsky, 2018). The experiment 
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then comprised three phases: (1) 10-putt familiarization task; (2) self-talk training; (3) putting task 

phase.

10-putt familiarization task. As participants were novices and unfamiliar with the laboratory 

setting, they performed 10 putts to familiarize with the experimental conditions.

Self-talk training. Given that Hatzigeorgiadis and colleagues’ (2011) meta-data supports the 

inclusion of a self-talk training phase, our participants practiced the self-talk instructions while 

performing an aiming motor task. A pre-recorded podcast was used to explain either instructional or 

motivational self-talk (see Supplementary Material). Participants then completed 20 trials of a mini 

basketball free-throw task. In the first 10 trials they were asked to practice the skill without any 

additional instruction. In the second 10 trials, they rehearsed a self-talk cue corresponding to the 

group they were assigned to before each attempt. The use of this task ensured that all participants had 

experience using self-talk during a precision motor task that is dissimilar to our experimental task (cf. 

Hatzigeorgiadis, Zourbanos, Mpoumpaki, & Theodorakis, 2009).

Putting task phase. Next, participants were told that they would begin the main golf putting 

phase of the experiment. Participants were assigned a group-specific cue for the golf-putting task: 

instructional cue “feet still – wrists locked – arms through”; motivational cue “come on, I can do 

this”. We assigned cues to increase within-group consistency (in terms of content and length) in the 

use of covert-verbalizations in preparation for each putt. We developed the self-talk cues based on 

previous protocols (Hardy, 2006; Hardy et al., 2015; Theodorakis et al., 2000), golf-coaching 

manuals, and pilot testing (see Supplemental Material). We instructed participants to silently say their 

assigned cue in their mind before every putt. They then completed a total of 80 putts with a two-

minute break at the mid-point. We reminded participants about their self-talk cue every 5 putts during 

this phase of the experiment. 

2.4 Physiological data

2.4.1 EEG data. EEG was recorded from thirty-two (32) active electrodes at Fp1, Fp2, AF3, 

AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, 

P4, P8, PO3, PO4, O1, Oz, O2 (10-20 system, Jasper, 1958). Additionally, active electrodes were 

positioned on each mastoid, at the outer canthus and below each eye to record vertical and horizontal 
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electrooculogram (EOG). All channels were recorded in monopolar. The signals were sampled at 

1024 Hz, with no online filter, using an ActiveTwo amplifier (Biosemi, The Netherlands). Electrode 

offset was kept below 15 mV. TTL triggers were sent to the BioSemi system to identify swing-onset, 

identified by the putter head being moved away from and thereby breaking an infrared beam 

controlled by an optical sensor (S51-PA 2-C10PK, Datasensor, Monte San Pietro, Italy) and a 

microphone (NT1, Rode, Silverwater, Australia) connected to a mixing desk (Club 2000, 

Studiomaster, Leighton Buzzard, UK), which detected the putter-to-ball contacts. These signals were 

recorded using both Actiview (BioSemi) and Spike2 Software (CED-2).  

Offline signal processing was performed using EEGLAB (Delorme & Makeig, 2004), 

ERPLAB (Lopez-Calderon, & Luck, 2014), and bespoke scripts in MATLAB (Mathworks Inc., 

USA). Data were down-sampled to 250 Hz, re-referenced to the average of all 32 EEG channels (no 

bad channels were identified), and filtered .01 to 30 Hz (Butterworth, 12dB/40roll-off order2 non-

causal). In line with previous research (e.g., Cooke et al., 2014; Hatfield et al., 2013) data were 

extracted from -4000 ms to +1000 ms relative to swing-onset, and centered around the average 

voltages between -200 ms and 0ms. Epochs were visually inspected and rejected if they contained 

gross artefacts. The number of epochs retained was 78.37 (SD = 3.14). Independent component 

analysis (ICA) weights were obtained through the RunICA informax algorithm (Makeig, Bell, Jung, 

& Sejnowski, 1996) running on these same EEG data (32 channels, yielding the same number of 

independent components): they were high-pass filtered to 1 Hz (FIR [finite impulse response] filter, 

filter order 826) and concatenated across all trials within each participant. Then ICA weights were 

applied to the original 0.1-30 Hz filtered signals, and artefactual components (e.g., eye or muscle 

related) flagged by automated procedures (SASICA plugin; Chaumon, Bishop, Busch, 2015) and then 

visually inspected were manually rejected. 

2.4.1.1 Time-frequency analysis. Time-frequency analysis was applied by convolving the 

Fast-Fourier Transform (FFT) power spectrum of each EEG artefact-free epoch with a family of 

complex Morlet wavelets, defined as a Gaussian-windowed complex sine wave:  ; where 𝑒𝑖2𝜋𝑡𝑓𝑒 ―𝑡2/2𝜎2

t is time, f is frequency bin, which increased from 4 to 30 Hz in 30 logarithmically steps, and σ defines 
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the width of each frequency band (set to cycles/2πf , with cycles ranging from 3 and 6), and then 

taking the inverse FFT to obtain the analytic signal z. From the convolution we obtained: (1) estimates 

of instantaneous power (squared magnitude of the analytic signal); and (2) phase (phase angle of the 

analytic signal) which was then used to compute inter-site connectivity. 

2.4.1.2 Individual alpha frequency (IAF). Following the approach advocated by Bazanova 

and Veron (2014), the individual frequency bands were calculated based on the individual alpha peak 

(IAF, Kilmesh, 1999). IAF was calculated with the IAF toolbox (Corcoran et al., 2018) based on a 60s 

segment of eyes-closed EEG recording taken before the beginning of the task, which was processed in 

the same way as task-related data (excluding the epoching). The mean IAF was 9.92 ± 1.17 for the 

instructional group and 9.92 ± .83 for the motivational group.

2.4.1.3 Power. Changes in instantaneous power were calculated from the complex signal for 

each frequency bin (f) as the squared magnitude of the result of the convolution defined as  (power 𝑍𝑡

time series: . 𝑝𝑡 = 𝑟𝑒𝑎𝑙(𝑧𝑡)2 + 𝑖𝑚𝑎𝑔(𝑧𝑡)2

For the analysis of power and connectivity, we focused on the IAF-adjusted high-alpha band 

(i.e., IAF to IAF + 2 Hz) since it is more sensitive than other frequency bands to task-related changes 

(Babiloni et al., 2011). Crucially, no baseline normalization was employed. Following the approach of 

Gallicchio and colleagues (Gallicchio et al., 2017) to control for skewness and interindividual 

differences, trial-averaged absolute alpha power was median-scaled log transformed, whereby values 

for each participant were scaled by the median of all values (electrode × points × block matrix) per 

each wavelet (representing a frequency bin) within that participant, and then subjected to a 10·log10 

transformation. Power was then averaged across IAF-adjusted frequency bands, and five 1 s time bins 

relative to movement initiation (bin1: -4s to -3s; bin2: -3s to -2s; bin3: -2s to -1s; bin4: -1s to 0s; bin5: 

0s to +1s). 

For the analysis of frontal asymmetry, we focused on the IAF-adjusted low-alpha (i.e., IAF–

2Hz to IAF; Davidson, Ekman, Saron, & Senulis, 1990). Asymmetry scores [log𝑒 (𝑟𝑖𝑔ℎ𝑡) ― 

] were computed for each time bin at medial frontal (F3, F4) regions (Coan, Allen, & log𝑒 (𝑙𝑒𝑓𝑡)

Harmon-Jones, 2001). Raw power values were for the calculation used as normalization and control 
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for skewness is afforded by the natural log transformation and the subtraction (Davidson et al., 1990). 

Since more alpha power indicates less cortical activity, positive asymmetry scores indicate greater 

relative left-frontal activation, and negative asymmetry scores indicate greater relative right-frontal 

activation.

2.4.1.4 Connectivity. Functional connectivity between sites was computed in terms of inter-

site phase clustering (ISPC) based on the phase angle time series, . This ϕ𝑡 = 𝑖𝑚𝑎𝑔(𝑧𝑡)2/𝑟𝑒𝑎𝑙(𝑧𝑡)2 

measure was preferred to others (e.g., magnitude squared coherence) because it is independent of 

absolute power variations (M. X. Cohen, 2014; Lachaux, Rodriguez, Marinerie, & Varela, 1999). 

ISPCtrials measures consistency of phase angle differences at specific time points across trials and is 

calculated with the following formula: ; where n is the 𝐼𝑆𝑃𝐶𝑥𝑦(𝑓) = |𝑛 ―1∑𝑛
𝑡 = 1𝑒𝑖(𝜃𝑥(𝑡𝑓) ― 𝜃𝑦(𝑡𝑓))|

number of trials, i is the imaginary operator, θx and θy are the phase angles of the recorded signal at 

two different scalp locations, t is trial, and f is the frequency bin,  is the complex vector 𝑒𝑖(𝜃𝑥(𝑡𝑓) ― 𝜃𝑦(𝑡𝑓))

with magnitude,  denotes averaging over trials (for ISPCtrials), and  is the magnitude of 𝑛 ―1∑𝑛
𝑡 = 1(.) |.|

the averaged vector (M. X. Cohen, 2014; Lachaux et al., 1999). The resulting ISPC is a real number 

between 0 (no functional connection) and 1 (perfect functional connection). ISPC values were Z-

transformed (i.e., inverse hyperbolic tangent) to ensure normal distribution before statistical analyses 

were performed (Halliday et al., 1995).

2.4.2 Cardiac activity. Cardiac activity was derived from an electrocardiogram (ECG) 

obtained using three single-use silver/silver chloride spot electrodes (BlueSensor SP, Ambu, 

Cambridgeshire, UK) placed on the clavicles and the lowest left rib. The ECG signal was amplified 

(Bagnoli-4, Delsys, Boston, MA), filtered (1–100 Hz), and digitized at 2500 Hz with 16-bit resolution 

(CED Power 1401, Cambridge Electronic Design, Cambridge, UK) using Spike2 software 

(Cambridge Electronic Design). 

The ECG signal was then used to compute the event-related instantaneous heart rate time 

series. Typically, in golf-putting research, there is a distinct event-related heart rate variability profile 

characterized by a deceleration in heart rate during the 6 s prior to movement, and an acceleration in 

heart rate during the 6 s post-movement (e.g., Cooke et al., 2014; Neumann & Thomas, 2009). Event-
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related heart rate in the final moments pre-movement until the putter-ball impact (typically around 1 s 

post movement initiation) are of particular interest because more pronounced heart rate deceleration 

(i.e., greater event-related heart rate variability) has been associated with increased automaticity and 

superior performance (e.g., Neumann & Thomas, 2009). Based on previous research (e.g., Cooke et 

al., 2014) the continuous time series was first segmented into epochs from -6 s to +6 s relative to 

swing-onset, and then voltages were centered by means of baseline subtraction (i.e., the mean value of 

the whole epoch was subtracted from each point of the time series). Instantaneous heart rate was 

derived from the intervals between successive R-wave peaks (R-R intervals) of the ECG in each 

epoch. Data were processed as follows: (1) a filter in the frequency domain was applied to remove 

slow frequencies; (2) an initial set of probable R-wave peaks were identified; (3) segments containing 

artefacts were identified based on extreme values and were interpolated; (4) the minimum distance 

between peaks was identified and used to optimize the R-wave peaks identifier; (5) the identified R-

wave peaks were manually reviewed and confirmed / adjusted as necessary; (6) the accepted R-wave 

peaks were used for the calculation of the R-R intervals; and (7) instantaneous heart rate (beats per 

minute) was calculated as 60000/(R-R interval). Each epoch was then split into thirteen 1s time bins 

and the nearest instantaneous heart rate value was assigned to each bin. Absolute heart rate was 

calculated by taking the average heart rate across all bins. Event-related variability in heart rate was 

calculated by computing a difference score between heart rate in the earliest seconds preceding the 

swing (bin1: -6; bin2: -5, bin3: -4), where heart rate is typically greatest and the value of the heart rate 

in the second after the movement intiation (bin007: +1), were maximal bradycardia is normally 

achieved (Cooke et al., 2014). Accordingly, a larger difference score indicates greater event-related 

heart rate variability (greater rate of change during the event-period) and was expected for the 

instuctional self-talk group. A smaller difference score indicates less event-related heart rate 

variability (smaller rate of change during the event-period) and was expected for the motivational 

self-talk group. 

2.4.3 Muscle activity. Muscle activity was derived from an electromyogram (EMG) 

measured using a differential surface electrode (DE 2.1, Delsys) affixed to the extensor carpi radialis 

and the flexor carpi ulnaris of the left arm, and a ground electrode (BlueSensor SP, Ambu, 
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Cambridgeshire, UK) on the left collarbone. These muscles were chosen based on previous research 

implicating them in the putting stroke of right-handed golfers (e.g., Cooke et al., 2010). The EMG 

signal was amplified (Bagnoli-4, Delsys), filtered (20–450 Hz), and digitized at 2500 Hz with 16-bit 

resolution (CED Power 1401) using Spike2 software.

The event-related activity of the flexor and extensor muscles was then calculated via the 

following steps: (1) the continuous data time series was rectified, (2) continuous data were segmented 

into epochs from -6 s to +6 s relative to swing-onset; (3) voltages were centered by means of baseline 

subtraction (i.e., the mean value of the whole epoch was subtracted from each point of the time 

series); and (4) each epoch was split into 500ms time bins and the average voltage for each bin was 

calculated (e.g., muscle activity for 6 seconds before was calculated as the mean activity between 6.25 

and 5.75 s prior to movement; see Cooke et al., 2014, 2015). 

2.5 Behavioral data

2.5.1 Performance outcome. Participants’ performance was evaluated in terms of angle error 

(degrees), length error (cm) and radial error (cm), which respectively yield measures of directional 

accuracy, force accuracy, and a combination of direction and force. These measures were computed 

for each putt using a camera system (Neumann & Thomas, 2008) and averaged (geometric mean, 

Gallicchio et al., 2017) to yield measures for each block. 

2.5.2 Movement kinematics. Technique was assessed by means of movement kinematics by 

using a triaxial accelerometer (LIS3L06AL, ST Microelectronics, Geneva, Switzerland). Acceleration 

on the X, Y, and Z axes corresponded to lateral, vertical, and back-and-forth movement of the 

clubhead, and assessed clubhead orientation, clubhead height, and impact velocity, respectively. The 

signals were conditioned by a bespoke buffer amplifier with a frequency response of DC to 15 Hz. 

Both accelerometer and amplifier were mounted in a 39 mm × 20 mm × 15 mm plastic housing 

secured to the rear of the putter head. To compute kinematic variables, we scored acceleration for 

each putt from the onset of the downswing phase of the putting stroke until the point of ball contact 

(e.g., Cooke, Kavussanu, McIntyre, Boardley, & Ring, 2011; Cooke, Kavussanu, McIntyre, & Ring, 

2010). Specifically, we calculated average acceleration for the X, Y, and Z axes.

2.6 Statistical Analyses
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Performance data were analyzed using independent samples t-tests to compare the two groups 

(instructional, motivational). Instantaneous heart rate and muscle activity were analyzed using Group 

× Bin (2 × 13; -6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6) ANOVAs. Power was analyzed by a 

Group × Site × Bin (bin1: -4s to -3s; bin2: -3s to -2s; bin3: -2s to -1s; bin4: -1s to 0s; bin5: 0s to +1s) 

ANOVA followed by separate ANOVAs at specific sites based on the effects that emerged. Based on 

our study aims, the factor site included the following channel subsets: frontal (Fz, F3, F4, F7, F8), 

central (Cz, C3, C4), parietal (Pz, P3, P4), occipital (Oz, O1, O2), and temporal (T7, T8). 

Connectivity was analyzed with separate Group × Pair × Bin ANOVAs to explore how the 

frontal-midline (Fz) and the parietal-midline (Pz) were respectively connected with the other 

electrodes considered (Fz, C3, C4, Cz, C3, C4, Pz, P3, P4, Oz, O1, O2, T7, T8). Moreover, Group × 

Bin ANOVA conducted for the T7-Fz pair based on our a priori hypothesis. Frontal asymmetry scores 

were analyzed through Group × Bin ANOVAs for the frontal (F3, F4) channel pair. The bin factor is 

recommended in studies of self-paced aiming movements in order to account for phasic shifts 

in power and connectivity during preparation for action (Cooke et al., 2014).

Significant main effects and interactions were probed by separate ANOVAs for each group, 

or bin, using polynomial trend analyses. The multivariate method of reporting results was adopted as 

it minimizes the risk of violating sphericity and compound symmetry assumptions in repeated 

measures ANOVA (Vasey & Thayer, 1987). Effect size is reported with Cohen’s d (t-tests) and partial 

eta-squared (ηp
2; ANOVAs) with values of d = .20 and ηp

2 = .01 indicating small effects, d = .50 and 

ηp
2 = .06 indicating medium effects, and d = .80 and ηp

2 = .14 indicating large effects (J. Cohen, 1988).  

3 Results

3.1 Cortical activity

3.1.1 Power. The Group × Site × Bin mixed-model ANOVA, conducted to obtain a general picture of 

the power profiles, revealed significant main effects of site, F(15, 24) = 126.56, p < .001, ηp
2 = .99, 

and bin, F(4, 35) = 4.54, p = .005, ηp
2 = .34, no effect for group, F(1, 38) = 3.35, p = .075, ηp

2 = .81, 

and a significant group × site interaction, F(15, 24) = 2.95, p = .009, ηp
2 = .65. Event-related changes 

in power during the preparatory period were evident (main effect of bin, quadratic trend p = .001, ηp
2 
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= .28), with a decrease in the two seconds before and in the second after swing-onset. Moreover, we 

also observed a specific topographic distribution with highest power at occipital (Oz, O1, O2), 

intermediate at temporal (F7, F8, T7, T8) and then frontal (Fz, F3, F4), reduced at parietal (Pz, P3, 

P4), and lowest at central sites (Cz, C3, C4) (see Supplementary Material Figure 3). However, of most 

interest was the group × site interaction. Separate ANOVAs performed for each channel revealed 

significant group differences at Pz and P4, F’s(1,38) = 8.97-12.02, p’s <.01, ηp
2’s = .19 - .24, 

characterized by more power for the instructional group (Pz M = .59 , SD = 1.20; P4 M = .26 , SD = 

1.30) than the motivational group (Pz M = -2.07 , SD = 2.04; P4 M = -1.25 , SD = 1.17). There were 

no significant group effects at any other sites. Effects are summarized in Figure 1A. 

In sum, power analyses tended to show (1) a well-defined topographical distribution of alpha 

activity (see Supplementary Material Figure 3), with highest power at occipital electrodes, 

intermediate power at temporal and frontal electrodes, relatively low power at parietal electrodes, and 

lowest power at central electrodes; (2) a swing-onset related decrease in power; (3) greater power at 

parietal sites in the instructional group than the motivational group (Figure 1A).

3.1.2 Connectivity. We conducted separate analyses to specifically assess the connectivity 

array with center of mass frontal-midline (Fz), and the parietal-midline (Pz).  

3.1.2.1 Fz connectivity. The Group × Pair × Bin mixed-model ANOVA assessing Fz 

connectivity revealed a main effect of pair, F(9, 30) = 120.21, p < .001, ηp
2 = .97, with strongest 

connectivity at frontoccipital (Fz-Oz, Fz-O1, Fz-O2) and frontoparietal pairs (Fz-P4, Fz-P3, Fz-Pz), 

intermediate at frontocentral pairs (Fz-C3, Fz-C4), and lowest at lateral frontotemporal pairs (Fz-T7, 

Fz-T8). Moreover, the analysis revealed a main effect of bin, F(4, 35) = 8.18, p = .001, ηp
2 = .48 

(quadratic trend p = .001, ηp
2 =.28, increase-decrease-increase) characterized by a decrease in 

connectivity (at bin 4) followed by an increase prior to swing onset (at bin 5). Of most interest, there 

was also a main effect of group, F(1, 38) = 11.81, p = .001, ηp
2 = .24, whereby connectivity was 

stronger in the motivational (M = .52, SD = .12) than in the instructional (M = .44, SD = .08) self-talk 

group. The Group × Bin  mixed-model ANOVA for left-frontotemporal connectivity (T7-Fz), 

conducted based on our a priori hypotheses, confirmed the main effect of group, F(1, 38) = 6.97, p = 
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.012, ηp
2 = .15, whereby connectivity was stronger for the motivational (M = .26, SD = .10) than the 

instructional (M = .20, SD = .04)  self-talk group. 

3.1.2.2 Pz connectivity. The Group × Pair × Bin mixed-model ANOVA examining Pz 

connectivity revealed a main effect of pair, F(8, 31) = 151.51, p < .001, ηp
2 = .97, whereby 

connectivity was highest at frontoparietal, and parietooccipital pairs (Pz-F3, Fz-Pz, Pz-F4, Pz-O1, Pz-

O2), intermediate at parietotemporal pairs (Pz-T7, Pz-T8) and lowest at parietocentral pairs (Pz-C3, 

Pz-C4). Importantly, it also confirmed the same main effect of group, F(1, 28) = 5.67, p = .022, ηp
2 = 

.13 (motivational M = .42, SD = .11 > instructional M = .36, SD = .08 self-talk) as was observed for 

Fz connectivity. However, no effect of bin emerged.  

In sum, the connectivity analyses revealed (1) strongest interconnections between 

frontoccipital and frontoparietal pairs (see Supplementary Material Figure 4); (2) an event-related 

decrease in Fz connectivity prior to swing-onset; (3) group differences characterized by stronger 

connectivity in the motivational group at frontal (including the left-frontotemporal pair) and parietal 

midline pairs (Figure 1B).  

3.1.2 Frontal Asymmetry. The Group × Bin mixed-model ANOVA failed to revealed any 

significant effects for F3-F4 asymmetry. Although non-significant, the means were in the expected 

direction (motivational self-talk M = .03, indicating asymmetry towards the left hemisphere; 

instructional self-talk M = -.06, indicating asymmetry towards the right hemisphere). 

INSERT FIGURE 1 HERE

3.2 Physiological data

3.2.1 Cardiac Activity. The Group × Bin mixed-model ANOVA revealed main effects of 

bin, F(12, 27) = 5.55, p = .001, ηp
2 = .71, best described by a cubic trend (p < .001, ηp

2 = .56), 

whereby heart rate began decelerating two seconds prior to swing initiation, the strongest bradycardia 

occurred during movement execution, before heart rate returned progressively to baseline values in 

the following seconds. The targeted event-related heart rate change analysis was performed by 

comparing the magnitude of deceleration in the two groups, we calculated difference scores between 
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the average heart rate in the seconds preceding the deceleration (bin001: -6; bin002: -5, bin003: -4) 

and the value of the heart rate in the second when deceleration was maximal (bin007: +1). These 

scores were analysed with a two-way randomized ANOVA which revealed a marginal effect of group, 

F(1, 38) = 3.31, p = .076, ηp
2 = .08, whereby the difference score was larger (i.e., more event-related 

heart rate variability) in the instructional group (M = 8.06 beats) compared to the motivational group 

(M = 4.75 beats). These results are displayed in Figure 2A.

3.2.2 Muscle activity. For the extensor muscle, the Group × Bin mixed-model ANOVA 

revealed a main effect of bin, F(12, 27) = 4.04, p = .001, ηp
2 = .64, which was best described by a 

quadratic trend (p < .001, ηp
2 = .40). Muscle activity increased one second before swing-onset, peaked 

during swing-execution, and returned to baseline thereafter. No main effect of group or Group × Bin 

interaction were observed. These results are displayed in Figure 2B.

For the flexor muscle, the same analysis revealed a main effect of bin, F(12, 27) = 2.53, p = 

.022, ηp
2 = .53, best described by a quadratic trend (p < .001, ηp

2 = .33), and a main effect of group, 

F(1, 38) = 4.92, p = .033, ηp
2 = .11.Overall, muscle activity increased relative to the swing (i.e., 

increase in the second preceding swing onset, peak during movement, and return to baseline 

thereafter) and was higher in the instructional group. These results are displayed in Figure 2C.

INSERT FIGURE 2 HERE

3.3 Behavioral data 

3.3.1 Performance Outcome. The independent samples t-test failed to reveal any group 

differences. Means are summarized in Table 1.

3.3.2 Movement kinematics. The independent samples t-test revealed group differences for 

X (lateral) axis acceleration, t(38) = -2.70, p = .011, d = 0.83, whereby acceleration was smaller for 

the instructional group. Means are summarized in Table 1.

INSERT TABLE 1 HERE

4 Discussion

The present study is the first to introduce and test a psychophysiological model of self-talk 

highlighting the distinctive features of instructional and motivational self-talk as it pertains to motor 
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skill execution. The effective integration of multiple data sources (e.g., behavioral, cardiac, muscular, 

and neural) and contemporarily analyzed (e.g., scalp level time-frequency power and connectivity 

analysis via wavelet convolution; individual alpha peak adjustment) data afforded us a comprehensive 

appreciation of how instructional and motivational self-talk might facilitate motor performance. Some 

predictions of the model were supported while a few were questioned. Each prediction is discussed 

and suggestions for refinement of our model in light of our findings are considered in the sections 

below. 

4.1 Instructional self-talk

We hypothesized that instructional self-talk would benefit motor closed-skill execution via 

increased top-down control of action (Hardy, 2006). Our kinematic results supported this prediction. 

Participants using instructional self-talk developed better technique, indexed by reduced lateral club-

head acceleration, compared to their motivational self-talk counterparts. Although there were no 

statistically significant effects on performance, inspection of the means reveals that there was also a 

tendency for members of the instructional group to perform better than members of the motivational 

group, indexed by smaller radial, angular and length errors. Participants using instructional self-talk 

also tended to display greater muscle activity, but since this spanned all epochs rather than being 

localized to epochs around the moment of impact, it provides only partial support for our muscle 

activity hypothesis. Rather than reflecting good technique in the form of accelerating through the ball, 

it is possible that the elevated muscle activity that characterized the instructional self-talk group is 

simply a further reflection of their top-down control, and their adoption of an internal focus on the 

mechanics of their swing (e.g., Zachry, Wulf, Mercer & Bezodis, 2005). Accordingly, muscle activity 

could be reconceptualized in our model as a variable reflecting conscious control, rather than as an 

index of technique. If considered as an index of conscious control of movements, our muscle activity 

findings (i.e., greater for instructional than motivational self-talk) are consistent with what our model 

would predict for a fine-motor skill. 

Based on findings from the conscious processing literature (Hatfield et al., 2013; Gallicchio et 

al., 2016; Zhu et al., 2011), we also expected participants in the instructional group to be characterized 

by greater left-temporal activity. Our results did not support this hypothesis. No group differences or 
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group-related interactions emerged for left-temporal power. Further, and in direct contrast to our 

hypothesis, left-frontotemporal was significantly lower among participants using instructional self-

talk compared to those using motivational self-talk. These findings could indicate that instructional 

self-talk is not associated with conscious motor processing, but since conscious motor processing 

involves the use of explicit instructions to guide movement, this seems unlikely. An alternative 

possibility is that left-temporal power may reflect self-talk frequency rather than self-talk content. In 

the current study, while the self-talk content employed by the instructional and motivational groups 

was clearly different, their self-talk frequency was the same. Previous studies advocating left-

temporal power as a neural index of conscious motor processing are mainly based on expert versus 

novice comparisons or comparisons of explicit versus implicit training methods which could elicit 

different self-talk frequencies. Future studies should further investigate the relative effects of semantic 

content versus self-talk frequency on left-temporal power to shed light on this pressing issue.

Self-talk frequency cannot account for our finding of lower left-frontotemporal connectivity in 

the instructional self-talk group. It should be noted that connectivity between frontal electrodes and all 

other sites was lower in members of the instructional self-talk group. In other words, there was 

nothing distinct about left-frontotemporal connectivity compared to any other form of frontal 

connectivity in our experiment. These findings cast some doubt on the validity of left-frontotemporal 

connectivity as an index of conscious motor processing and are at odds with previous literature in the 

area. However, many of the previous studies endorsing left-frontotemporal measures did so via 

expert-novice comparisons (e.g., Gallicchio et al., 2016) or by comparing groups who were high 

versus low in dispositional reinvestment (e.g., Zhu et al., 2011). Accordingly, other between-group 

differences (e.g., experience, personality) may account for some of the effects in previous studies. The 

validity of T7-Fz connectivity as an index of verbal-analytic processing has also been questioned in a 

recent study by Parr and colleagues (2019). Rather than reflecting conscious motor processing, it 

seems on the basis of our results that all connectivity between frontal and other sites could reflect the 

extent to which sensory (e.g., auditory, visual, perceptual) processes influence frontally-generated 

action plans. By having a clear instructional focus, members of our instructional self-talk group may 
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have been able to block, to an extent, communication from other cortex sites from interfering with 

motor planning. Further elaboration of this idea is provided in reference to our next hypothesis.   

Finally, based on neuroscience literature examining feedback and feedforward motor control 

(Ashe et al., 2006), we hypothesized that participants using instructional self-talk would be 

characterized by less frontal and more parietal alpha power, alongside reduced frontal and parietal 

connectivity. This hypothesis was partially supported. Specifically, the instructional group tended to 

be characterized by greater parietal alpha power (suggesting diminished sensorimotor processing). 

Moreover, it showed weaker connectivity between frontal sites and the rest of the sites examined, 

including the parietal ones. This suggests reduced integration of frontal plans with different types of 

information, such as perceptual-sensorimotor, visual and verbal information. However, no statistically 

significant alpha power differences were observed at frontal sites. These findings provide some 

evidence to suggest that instructional self-talk encouraged a reduced relative weight of parietal 

processing in the frontoparietal network, indicative of more top-down control of action (Ashe et al., 

2006). However, as group differences in connectivity were widespread rather than localized to frontal-

parietal electrode pairs, our results are not fully in line with Ashe and colleagues’ (2006) 

frontoparietal model. Instead, our data suggest reduced parietal activity and reduced connectivity 

between frontal and all other sites appear the most promising neurophysiological signatures of 

instructional self-talk and could explain the performance benefits of this self-talk modality (Hardy, 

2006).

4.2 Motivational self-talk

We expected motivational self-talk to influence EEG frontal asymmetry and cardiac activity. 

First, based on theories of approach and avoidance motivation, we hypothesized that motivational 

self-talk would encourage approach motivation, characterized by a relative increase in left-frontal 

cortical activity (Harmon-Jones et al., 2010). Results failed to support this hypothesis. There was no 

group main effect for frontal asymmetry. It is possible that the lack of group differences was due to 

instructional self-talk also encouraging approach motivation to some extent; future studies measuring 

frontal asymmetry could compare instructional, motivational and no self-talk groups to test this 

possibility. Additionally, given that some research (e.g., Hardy et al., 2015) indicates that the 
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beneficial role of instructional self-talk is less pronounced, while the effect of motivational self-talk is 

more distinct for skilled performers, it is possible that any effects of motivational self-talk on frontal 

asymmetry would manifest more clearly when utilized by experts. Alternatively, the influence of 

motivational self-talk on EEG frontal asymmetry might be clearer if researchers incorporated gross 

motor skills into their studies, for which this type of self-talk has been demonstrated to be more 

effective (Hatzigeorgiadis et al., 2011).  

Our second hypothesis was that motivational self-talk would elicit greater heart rate and less 

event-related heart rate variability, when compared to instructional self-talk. This was based on the 

premise that motivational self-talk would increase effort, and the compelling literature associating 

increased effort with greater heart rate and reduced heart rate variability (Mulder,1992; Wilson, 

Smith, & Holmes, 2010;). Results partially supported this hypothesis. Members of the motivational 

self-talk group displayed a trend for higher heart rates and showed significantly less variability in 

heart rate during the six seconds preceding putts when compared to their instructional counterparts. 

While these cardiovascular effects of motivational self-talk did little to aid performance and 

kinematics during the current fine-motor task, they might be very helpful for gross motor tasks 

(Hardy, 2006; Hatzigeorgiadis et al., 2011); future research should examine this suggestion. 

4.3 Limitations and future directions

Our results should be interpreted in light of some methodological limitations. First, the 

current study did not contain a no-self talk control group. However, there is already a body of 

literature investigating the psychophysiological profiles of novice golfers who did not receive any 

self-talk intervention (e.g., Gallicchio et al., 2017); our results can be compared to these extant 

findings. Second, we did not use an irrelevant self-talk control group. However, we believe that the 

simple engagement in covert verbal activity, was, to some extent, controlled for by having both 

groups engage in self-talk. Nonetheless, given the current encouraging findings we see value in a 

future investigation which would specifically target this question. Third, since we tested novice 

golfers, and given the short acquisition phase, we believe that a replication of the present investigation 

with expert golfers could improve our understanding of the effects of self-talk on skills that have 

already been acquired and consolidated (cf. Tod et al., 2011). Fourth, we concede that the sample size 
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was relatively small. Our sample size was larger than those adopted in previous EEG and motor 

performance studies (e.g., Cooke et al., 2014: Hatfield et al., 2013; Gallicchio et al., 2017; Gentili et 

al., 2015; Zhu et al., 2011), and it was sufficiently powered to detect a number of main and interaction 

effects as detailed above. Notwithstanding, it may be beneficial for future studies to replicate and 

extend our experiment with a larger population. Fifth, we recognize that our inter-site phase clustering 

(also known as phase locking value) approach to assessing connectivity provides a consolidated 

measure of connectivity (Gallicchio et al., 2016, 2017; Parr et al., 2019), but does not provide 

information on connectivity direction. Future studies would do well to apply alternative techniques, 

such as Granger Causality (M. X. Cohen, 2014), which can provide insights on directionality. Such 

techniques are rarely applied in the brain and motor performance literature. Given our theorizing and 

partial support for a frontoparietal model of connectivity, we hope researchers now see a mandate for 

examining directionality to further test this model in future brain and motor performance studies.  

Finally, we concede that the current study tested only a small portion of what is considered 

the most comprehensive and up-to-date self-talk taxonomy (Latinjak, Hatzigeorgiadis, Comoutos, & 

Hardy 2019). In brief, Latinjak and colleagues (2019) distinguish between naturally happening 

verbalization (organic self-talk) and predetermined verbalizations based on a specific intervention 

plan (strategic self-talk). Verbalizations are also distinguished based on whether they have been 

assigned or self-developed and on their timing in relation to the skill (prior, during, after). The 

instructional or motivational function of self-talk can also be sub-divided (e.g., instructional skill 

focus, instructional strategy, motivational arousal, motivational mastery, motivational drive). The 

current study speaks to strategic, assigned, prior-to-skill, instructional skill focus and motivational 

mastery self-talk in the context of fine motor skills only. Future endeavors should explore the full 

ramification of this taxonomy and expand the currently presented psychophysiological model of self-

talk.  

4.4 Conclusion

By employing a multi-measure approach (e.g., EEG, ECG, EMG, kinematics, and detailed 

execution parameters), the current study is the first to develop and test a mechanistic 

psychophysiological model of instructional and motivational self-talk and their effects on closed-skill 
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motor performance. In partial support of the model, instructional self-talk was associated with less 

parietal activation and less connectivity between frontal and parietal electrodes and all other sites, 

which resulted in better technique and a non-significant trend for better performance. This finding 

provides some support for an information-processing mechanism for the benefits of instructional self-

talk and provides the first evidence for a neurophysiological signature of instructional self-talk. On the 

other hand, motivational self-talk triggered a cardiovascular response (higher heart rate and reduced 

event-related heart rate variability) which suggests a mental-effort-based mechanism for the benefits 

of motivational self-talk. Finally, our results cast doubt on the validity of left-temporal EEG measures 

as reliable indices of verbal-analytic processes during motor preparation. In all, the study represents 

the most thorough self-talk investigation to date, both in detail and range of data collected (e.g., EEG, 

ECG, EMG, kinematics, and detailed execution parameters). Importantly, had we limited our analysis 

to the common behavioral measures obtained in the self-talk literature, our key mechanistic findings 

would have gone undetected. We hope that our development of a psychophysiological model of self-

talk alongside the encouraging data to support the model inspires other researchers to follow and 

move beyond a reliance on behavioral and self-report data collection methods.
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Table 1. Mean (SD) of performance and kinematic measures per group (i.e., instructional and 
motivational). 
Measure (range)
Radial Error (cm)
   Instructional
   Motivational

28.15 (6.14)
29.55 (6.09)

Angle Error (degrees)
   Instructional
   Motivational

0.65 (0.26)
0.74 (0.21)

Length Error (cm)
   Instructional
   Motivational

25.19 (7.37)
26.35 (6.41)

Lateral (x-axis) Acceleration (ms-2)
   Instructional
   Motivational

0.33 (0.14)
0.47 (0.19)

Vertical (y-axis) Acceleration (ms-2)
   Instructional
   Motivational

0.45 (0.15)
0.45 (0.17)

Back-and-Forth (z-axis) Acceleration (ms-2)
   Instructional
   Motivational

2.42 (1.17)
3.06 (1.77)

Page 30 of 38Psychophysiology

Psychophysiology



1 
PSYCHOPHYSIOLOGICAL PROFILES OF SELF-TALK 

 

 

Figure 1. Instructional – motivational group differences: A) topographic distribution of median scaled power; 

B) topographic connectivity network of atanh(ISPCtrials). Each column represents time bin (-4 to -3, -3 to -2, -

2 to -1, -1 to 0, 0 to +1). Red colors indicate higher values for instructional and blue colors indicate higher 

values for motivational self-talk groups.  
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Figure 2. The figures represent the Bin × Group effects for cardiac activity and muscle activity. The x-axis 

represents seconds around swing-onset (time = 0 s); the y-axis represents (A) instantaneous heart-rate; (B) 

extensor muscle activation; (C) flexor muscle activation. Red = Instructional self-talk; Blue = Motivational 

self-talk. Shading indicates standard error of the means.  
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Supplementary Material

Development of the self-talk cues

Participants in the instructional self-talk group were assigned the cue feet still-wrists locked-arms 

through (Appendix 1).  We developed the cue based on the following procedure (inspired by 

research from Gucciardi & Dimmock, 2008). First, a set of general putting set-up rules was devised 

from a PGA coaching manual. Second, in a pilot session, the most important rules for a novice and 

their sequential order were identified. Specifically, prior to each putt, a member of the research 

team (VP) with no previous golfing or mini-golfing experience: 1) read out loud the instructions; 2) 

performed a putt (distance from target ~3m); 3) ranked the order to which each single rule was 

used. Points 1), 2), and 3) were repeated for 30 putts, which represented the moment in which the 

sequential position of each rule became consistent (see Table 3 for the order of the rules). Third, VP 

was asked to identify three phonologically-simple keywords that she felt were encompassing the 

most relevant rules. Once the three words were identified, she performed 10 more putts, but this 

time she was asked to silently say these words “in her mind” before performing each putt. Then, she 

reflected on whether she felt that these words were useful, and she was given the chance to change 

the words if she wanted. This procedure was repeated twice before VP was satisfied. The keywords 

identified were feet, lock, and gentle and refer to rule 2, 3, and 4 of Table 2, respectively. Fourth, 

the key-words were evaluated and modified by the rest of the research team (JH, AC, EB) until 

unanimous consensus was reached on the fact that the cue met the following criteria: 1) compliant 

to Landin’s (1994) recommendations (i.e., brief and phonetically simple; logically associated with 

the referent element of the skill; and conformed to the sequential timing pattern of the task); 2) 

focus on body parts and skill (rather than strategy focused, cf., Hardy, 2006), or in other words, 

characterised by an explicit emphasis on relevant motor processes necessary for task. For this 

reason, a direct reference to body parts was added (i.e., feet, wrists, arms). Moreover, since the third 

keyword, gentle, was considered to be too strategy related as well as too specific to VP, it was 

substituted with arms through. In order to make clear the meaning of each cue words with respect to 
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the task, upon assignment of the cue, participants were explained how each word connected to the 

corresponding rule/s (Appendix 1). Participants in the motivational self-talk group were assigned 

the cue come on-I can do this (Appendix 2). This cue was derived by previous self-talk research 

(Hardy, Begley, & Blanchfield, 2015; Linnér & Sandström, 2010; Theodorakis et al., 2000) and was 

unanimously agreed upon by the research team (JH, AC, EB, VP) for having a focus on mastery 

(rather than an arousal, see Hardy, 2006) and being comparatively short and phonetically simple as 

the instructional cue. 

Table 1. Putting rules: 
- Hold the club with your hands close together, the non‐dominant hand at the top of 

the club. 
- Stand side‐on with your weight even on both feet. 
- The club should be vertical to the ball1.
- Backswing distance is equal to through‐swing distance. 
- Swing from the arms and shoulders, keeping wrists and elbows locked. 
- Lower body and head remain still. 
- Stand with your feet close together, the ball in the middle.

Table 3. Sequence of rules2: 
1) Hold the club with your hands close together, the non‐dominant hand at the 

top of the club. 
2) Stand side‐on with your weight even on both feet.

Stand with your feet close together, the ball in the middle.
3) Swing from the arms and shoulders, keeping wrists and elbows locked.

Lower body and head remain still.
4) Backswing distance is equal to through‐swing distance.

1 This rule was removed since it has an external focus of attention (cf., Wulf, 2015), and as such, it might trigger a more 
implicit processing of the movement (for a detailed discussion see: Masters & Maxwell, 2008).
2 To measure the exact moment during which the swing happened, an infra-red sensor was used to measure when the 
club was moved away from the starting position. For this reason, participants in both the instructional and motivational 
self-talk group were asked to “address the ball so that the light of the sensor is orange”. 
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Appendix 1: self-talk explanation (podcast) instructional

Self-talk is a cognitive strategy that has been shown to improve 
performance and refers to any verbal cues or phrases we say to 
ourselves, whether out loud or in our mind, while learning or 
performing a task. 

In the present study we are interested in understanding how self-talk 
might influence your learning or performance of a golf putting task. 

We are particularly interested in a specific type of self-talk that aims 
to help you to focus on the correct execution of the movements 
required to perform the task, called instructional self-talk.

Based on previous studies and golfing coaching manuals, the
following phrase has been developed: 

FEET STILL – WRISTS LOCKED – ARMS THROUGH 

The FEET STILL word refers to “standing side-on with your weight 
even on both feet and the ball in the middle”

The WRISTS LOCKED word refers to “keep wrists and elbows 
locked and your lower body and head still”

The ARMS THROUGH word refers to “swing through from the arms 
and shoulders, with backswing distance equal to through‐swing 
distance”.

It is important that you say this phrase SILENTLY IN YOUR MIND 
to yourself before EACH putt.  
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Appendix 2: self-talk explanation (podcast) motivational

Self-talk is a cognitive strategy that has been shown to improve 
performance and refers to any verbal cues or phrases we say to 
ourselves, whether out loud or in our mind, while performing a task. 

In the present study we are interested in understanding how self-talk 
might influence your learning and performance of a golf putting task. 

We are particularly interested in a specific type of self-talk that aims 
to increase your self-confidence when performing the task, called 
motivational self-talk.

Based on previous self-talk research the following phrases have been 
developed: 

COME ON - I CAN DO THIS

These keywords refer to the fact that you have all the skills necessary 
to perform well in this task.

It is important that you say this phrase SILENTLY IN YOUR MIND 
to yourself before EACH putt. 
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Figure 3. Topographic distribution of median scaled power in the instructional (panel A) and motivational 
(panel B) group. Each column represents time bin (-4 to -3, -3 to -2, -2 to -1, -1 to 0, 0 to +1 s). 

Page 37 of 38 Psychophysiology

Psychophysiology



6
PSYCHOPHYSIOLOGICAL PROFILES OF INSTRUCTIONAL AND MOTIVATIONAL SELF-TALK

Connectivity

Figure 4. Topographic distribution of atanh(ISPCtrials) in the instructional (panel A) and motivational (panel B) 
group. Each row represents a block (B1, B2), each column represents time bin (-4 to -3, -3 to -2, -2 to -1, -1 to 0, 0 
to +1 s)

Control analyses 

Following the approach reported by the research group of Babiloni (Babiloni et al., 2011; Del 

Percio et al., 2011), we performed a control analysis to rule out the possibility that our connectivity 

results were due to volume conduction (Nolte et al., 2004). As shown in Figure 5, values of the 

imaginary part of our connectivity measure (ISPC across trials) were non-zero globally for the 

electrode pairs selected for the analysis. Therefore, it is unlikely that volume conduction affected 

the connectivity values discussed in the present study.

Figure 5. Distribution of connectivity values. Blue: instructional group; Red: motivational group. The left panel 
shows ISPC across trials, whereas the right panel shows the imaginary part of ISPC across trials.
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