33 research outputs found

    Magnetic configurations of the tilted current sheets in magnetotail

    Get PDF
    In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 <I>R<sub>E</sub></I>, while the neutral sheet may be very thin, with its half thickness being several tenths of <I>R<sub>E</sub></I>. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak magnetospheric activity

    Transient and localized processes in the magnetotail: a review

    Get PDF
    Many phenomena in the Earth's magnetotail have characteristic temporal scales of several minutes and spatial scales of a few Earth radii (<I>R<sub>E</sub></I>). Examples of such transient and localized mesoscale phenomena are bursty bulk flows, beamlets, energy dispersed ion beams, flux ropes, traveling compression regions, night-side flux transfer events, and rapid flappings of the current sheet. Although most of these observations are linked to specific interpretations or theoretical models they are inter-related and can be the different aspects of a physical process or origin. Recognizing the inter-connected nature of the different transient and localized phenomena in the magnetotail, this paper reviews their observations by highlighting their important characteristics, with emphasis on the new results from Cluster multipoint observations. The multi-point Cluster measurements have provided, for the first time, the ability to distinguish between temporal and spatial variations, and to resolve spatial structures. Some examples of the new results are: flux ropes with widths of 0.3 <I>R<sub>E</sub></I>, transient field aligned currents associated with bursty bulk flows and connected to the Hall current at the magnetic reconnection, flappings of the magnetotail current sheet with time scales of 100 s–10 min and thickness of few thousand km, and particle energization including velocity and time dispersed ion structures with the latter having durations of 1–3 min. The current theories of these transient and localized processes are based largely on magnetic reconnection, although the important role of the interchange and other plasma modes are now well recognized. On the kinetic scale, the energization of particles takes place near the magnetic X-point by non-adiabatic processes and wave-particle interactions. The theory, modeling and simulations of the plasma and field signatures are reviewed and the links among the different observational concepts and the theoretical frameworks are discussed. The mesoscale processes in the magnetotail and the strong coupling among them are crucial in developing a comprehensive understanding of the multiscale phenomena of the magnetosphere

    Thin Current Sheets of Sub‐ion Scales observed by MAVEN in the Martian Magnetotail

    No full text
    Current sheets (CSs) play a crucial role in the storage and conversion of magnetic energy in planetary magnetotails. Using high‐resolution magnetic field data from MAVEN spacecraft, we report the existence of super thin current sheets (STCSs) in the Martian magnetotail. The typical half‐thickness of the STCSs is ~5 km, and it is much less than the gyroradius of thermal protons (ρp). The STCSs are embedded into a thicker sheet with L ≄ ρp forming a multiscale current configuration. The formation of STCS does not depend on ion composition, but it is controlled by the small value of the normal component of the magnetic field at the neutral plane (BN). A number of the observed multiscale CSs are located in the parametric map close to the tearing‐unstable domain, and thus, the inner STCS can provide an additional free energy to excite ion tearing mode in the Martian magnetotail

    Formation of self-organized shear structures in thin current sheets

    No full text
    International audienceSelf-consistent kinetic (particle-in-cell) model of magnetotail thin current sheet (TCS) is used to understand the formation of self-consistent sheared magnetic structures. It is shown that shear configurations appear in TCS as a result of self-consistent evolution of some initial magnetic perturbation at the current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field-aligned currents in the center of the current sheet, as a result of north-south asymmetry of quasi-adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented that show a higher probability of formation of symmetric shear TCS configuration at lower values of the normal magnetic component
    corecore