29,763 research outputs found

    Non-Fermi-Liquid Behavior from the Fermi-Liquid Approach

    Full text link
    Non-Fermi liquid behavior of strongly correlated Fermi systems is derived within the Landau approach. We attribute this behavior to a phase transition associated with a rearrangement of the Landau state that leads to flattening of a portion of the single-particle spectrum ϵ(p)\epsilon({\bf p}) in the vicinity of the Fermi surface. We demonstrate that the quasiparticle subsystem responsible for the flat spectrum possesses the same thermodynamic properties as a gas of localized spins. Theoretical results compare favorably with available experimental data. While departing radically from prevalent views on the origin of non-Fermi-liquid behavior, the theory advanced here is nevertheless a conservative one of in continuing to operate within the general framework of Landau theory.Comment: 8 pages, 4 figures, corrected list of author

    The Akulov-Volkov Lagrangian, Symmetry Currents and Spontaneously Broken Extended Supersymmetry

    Full text link
    A generalization of the Akulov-Volkov effective Lagrangian governing the self interactions of the Nambu-Goldstone fermions associated with spontaneously broken extended supersymmetry as well as their coupling to matter is presented and scrutinized. The resulting currents associated with R-symmetry, supersymmetry and space-time translations are constructed and seen to form a supermultiplet structure.Comment: 17 pages, LaTeX; Title, abstract and introduction changes, references adde

    Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

    Full text link
    Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses from the scrape-off layer and divertor plasma and impurity radiation losses from the divertor plasma. This anaysis indicates that bremsstrahlung from the plasma center and impurity radiation from the plasma edge and divertor plasma can each play a significant role in reducing the power to the divertor plates, and identifies many of the factors which determine the relative role of each process. For instance, for radiation losses in the divertor to be large enough to radiate the power in the divertor for high power experiments, a neutral fraction of 10-3 to 10-2 and an impurity recycling rate of netrecycle of ~ 10^16 s m^-3 will be required in the divertor.Comment: Preprint for the 1994 APSDPP meeting, uuencoded and gzipped postscript with 22 figures, 40 pages

    On Properties of the Isoscalar Giant Dipole Resonance

    Get PDF
    Main properties (strength function, energy-dependent transition density, branching ratios for direct nucleon decay) of the isoscalar giant dipole resonance in several medium-heavy mass spherical nuclei are described within a continuum-RPA approach, taking into account the smearing effect. All model parameters used in the calculations are taken from independent data. Calculation results are compared with available experimental data.Comment: 12 pages, 2 figure

    Asymmetric optical nuclear spin pumping in a single uncharged quantum dot

    Full text link
    A highly asymmetric dynamic nuclear spin pumping is observed in a single self assembled InGaAs quantum dot subject to resonant optical pumping of the neutral exciton transition leading to a large maximum polarization of 54%. This dynamic nuclear polarization is found to be much stronger following pumping of the higher energy Zeeman state. Time-resolved measurements allow us to directly monitor the buildup of the nuclear spin polarization in real time and to quantitatively study the dynamics of the process. A strong dependence of the observed dynamic nuclear polarization on the applied magnetic field is found, with resonances in the pumping efficiency being observed for particular magnetic fields. We develop a model that fully accounts for the observed behaviour, where the pumping of the nuclear spin system is due to hyperfine-mediated spin flip transitions between the states of the neutral exciton manifold.Comment: published version; 4+ pages, 3 figures (eps

    The Formation and Fragmentation of Disks around Primordial Protostars

    Full text link
    The very first stars to form in the Universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between the Earth and the Sun.Comment: This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org

    Superconducting Analogues of Quantum Optical Phenomena: Macroscopic Quantum Superpositions and Squeezing in a SQUID Ring

    Get PDF
    In this paper we explore the quantum behaviour of a SQUID ring which has a significant Josephson coupling energy. We show that that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilised to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring.Comment: 9 pages, 10 figures, To be submitted to Phys. Rev. A. (changes for referee's and editior's comments - replaced to try to get PDF working

    The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation

    Get PDF
    The stochastic dynamics of micron and nanoscale cantilevers immersed in a viscous fluid are quantified. Analytical results are presented for long slender cantilevers driven by Brownian noise. The spectral density of the noise force is not assumed to be white and the frequency dependence is determined from the fluctuation-dissipation theorem. The analytical results are shown to be useful for the micron scale cantilevers that are commonly used in atomic force microscopy. A general thermodynamic approach is developed that is valid for cantilevers of arbitrary geometry as well as for arrays of multiple cantilevers whose stochastic motion is coupled through the fluid. It is shown that the fluctuation-dissipation theorem permits the calculation of stochastic quantities via straightforward deterministic methods. The thermodynamic approach is used with deterministic finite element numerical simulations to quantify the autocorrelation and noise spectrum of cantilever fluctuations for a single micron scale cantilever and the cross-correlations and noise spectra of fluctuations for an array of two experimentally motivated nanoscale cantilevers as a function of cantilever separation. The results are used to quantify the noise reduction possible using correlated measurements with two closely spaced nanoscale cantilevers.Comment: Submitted to Nanotechnology April 26, 200

    Re-entrance and entanglement in the one-dimensional Bose-Hubbard model

    Get PDF
    Re-entrance is a novel feature where the phase boundaries of a system exhibit a succession of transitions between two phases A and B, like A-B-A-B, when just one parameter is varied monotonically. This type of re-entrance is displayed by the 1D Bose Hubbard model between its Mott insulator (MI) and superfluid phase as the hopping amplitude is increased from zero. Here we analyse this counter-intuitive phenomenon directly in the thermodynamic limit by utilizing the infinite time-evolving block decimation algorithm to variationally minimize an infinite matrix product state (MPS) parameterized by a matrix size chi. Exploiting the direct restriction on the half-chain entanglement imposed by fixing chi, we determined that re-entrance in the MI lobes only emerges in this approximate when chi >= 8. This entanglement threshold is found to be coincident with the ability an infinite MPS to be simultaneously particle-number symmetric and capture the kinetic energy carried by particle-hole excitations above the MI. Focussing on the tip of the MI lobe we then applied, for the first time, a general finite-entanglement scaling analysis of the infinite order Kosterlitz-Thouless critical point located there. By analysing chi's up to a very moderate chi = 70 we obtained an estimate of the KT transition as t_KT = 0.30 +/- 0.01, demonstrating the how a finite-entanglement approach can provide not only qualitative insight but also quantitatively accurate predictions.Comment: 12 pages, 8 figure
    corecore