48 research outputs found

    Enzyme-Catalyzed Macrocyclization of Long Unprotected Peptides

    Get PDF
    A glutathione S-transferase (GST) catalyzed macrocyclization reaction for peptides up to 40 amino acids in length is reported. GST catalyzes the selective SNAr reaction between an N-terminal glutathione (GSH, γ-Glu-Cys-Gly) tag and a C-terminal perfluoroaryl-modified cysteine on the same polypeptide chain. Cyclic peptides ranging from 9 to 24 residues were quantitatively produced within 2 h in aqueous pH = 8 buffer at room temperature. The reaction was highly selective for cyclization at the GSH tag, enabling the combination of GST-catalyzed ligation with native chemical ligation to generate a large 40-residue peptide macrocycle.Massachusetts Institute of Technology (MIT startup funds)National Institutes of Health (U.S.) (grant GM101762)Damon Runyon Cancer Research Foundation (Award)Sontag Foundation (Distinguished Scientist Award)Amgen Inc. (Summer Graduate Research Fellowship

    Thioester bonds of Thiocoraline can be replaced with NMe-Amide bridges without affecting its DNA-binding properties

    No full text
    In the search for new drug candidates for DNA recognition, affinity and sequence selectivity are two of the most important features. NMe-azathiocoraline, a synthetic antitumor bisintercalator derived from the natural marine product thiocoraline, shows similar potency to the parent compound, as well as possessing enhanced stability. Analysis of the DNA-binding selectivity of NMe-azathiocoraline by DNase I footprinting using universal substrates with all 136 tetranucleotides and all possible symmetrical hexanucleotide sequences revealed that, although this ligand binds to all CpG steps with lower affinities than thiocoraline, it displays additional binding to AT-rich sites. Moreover, fluorescence melting studies showed a strong interaction of the synthetic molecule with CACGTG and weaker binding to ACATGT and AGATCT. These findings demonstrate that NMe-azathiocoraline has the same mode of action as thiocoraline, mimicking its DNA-binding selectivity despite the substitution of its thioester bonds by NMe-amide bridges

    Mirabilins revisited:Polyketide alkaloids from a southern Australian marine sponge, Clathria sp.

    No full text
    Chemical investigation of a southern Australian marine sponge, Clathria sp., yielded the known mirabilins C, F and G, together with three new analogues, mirabilins H-J. For the first time mirabilins C and F are documented as the underivatized natural products, and a complete absolute stereochemistry is assigned to mirabilin F. Mirabilin I represents the first member of this structure class to incorporate a trans-fused ring junction. Structures for all mirabilins are assigned on the basis of detailed spectroscopic analysis. A plausible polyketide origin is proposed, linking all mirabilins and related sponge alkaloids. Mirabilin cytotoxicity against several human cancer cell lines is discussed

    Trachycladindoles A-G: cytotoxic heterocycles from an Australian marine sponge, Trachycladus laevispirulifer.

    No full text
    A southern Australian marine sponge, Trachycladus laevispirulifer, yielded the cytotoxic agents trachycladindoles A-G (1-7) as a selection of novel indole-2-carboxylic acids bearing a 2-amino-4,5-dihydroimidazole moiety

    Synthesis of cyclohexapeptides as antimalarial and anti-trypanosomal agents

    No full text
    Azolic and non-azolic cyclohexapeptides were obtained and/or evaluated as promising antimalarial and/or anti-trypanosomal agents.</p
    corecore