266 research outputs found

    Адаптация государственных программ в коммерческую деятельность банка

    Get PDF
    Объектом исследования является адаптация государственных программ в деятельности коммерческих банков. Предметом исследования является система экономических и организационных отношений, возникающая в процессе внедрения государственных программ в российских коммерческих банках как услуг и их адаптации. Цель работы – проведение анализа процесса адаптации государственных программ в деятельность коммерческих банков и выработка выводов и рекомендаций.The object of the study is the adaptation of state programs in the activities of commercial banks. The subject of the study is the system of economic and organizational relations arising in the process of implementing state programs in Russian commercial banks as services and their adaptation. The purpose of the work is to analyze the process of adaptation of state programs in the activities of commercial banks and the development of conclusions and recommendations

    Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities

    Get PDF
    Fluor-schorl, NaFe^(2+) _3Al_6Si_6O_(18)(BO_3)_3(OH)_3F, is a new mineral species of the tourmaline supergroup from alluvial tin deposits near Steinberg, Zschorlau, Erzgebirge (Saxonian Ore Mountains), Saxony, Germany, and from pegmatites near Grasstein (area from Mittewald to Sachsenklemme), Trentino, South Tyrol, Italy. Fluor-schorl was formed as a pneumatolytic phase and in high-temperature hydrothermal veins in granitic pegmatites. Crystals are black (pale brownish to pale greyish-bluish, if distance (r^2 = 0.93). This correlation indicates that Fe^(2+)-rich tourmalines from the investigated localities clearly tend to have a F-rich or F-dominant composition. A further strong positive correlation (r^2 = 0.82) exists between the refined F content and the Y–W (F,OH) distance, and the latter may be used to quickly estimate the F content

    Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: normal behavior and validation in patients with amyloidosis

    Get PDF
    BACKGROUND: T1 mapping using modified Look-Locker inversion recovery (MOLLI) provides quantitative information on myocardial tissue composition. T1 results differ between sites due to variations in hardware and software equipment, limiting the comparability of results. The aim was to test if Z-scores can be used to compare the results of MOLLI T1 mapping from different cardiovascular magnetic resonance (CMR) platforms. METHODS: First, healthy subjects (n = 15) underwent 11 combinations of native short-axis T1 mapping (four CMR systems from two manufacturers at 1.5 T and 3 T, three MOLLI schemes). Mean and standard deviation (SD) of septal myocardial T1 were derived for each combination. T1 maps were transformed into Z-score maps based on mean and SD values using a prototype post-processing module. Second, Z-score mapping was applied to a validation sample of patients with cardiac amyloidosis at 1.5 T (n = 25) or 3 T (n = 13). RESULTS: In conventional T1 analysis, results were confounded by variations in field strength, MOLLI scheme, and manufacturer-specific system characteristics. Z-score-based analysis yielded consistent results without significant differences between any two of the combinations in part 1 of the study. In the validation sample, Z-score mapping differentiated between patients with cardiac amyloidosis and healthy subjects with the same diagnostic accuracy as standard T1 analysis regardless of field strength. CONCLUSIONS: T1 analysis based on Z-score mapping provides consistent results without significant differences due to field strengths, CMR systems, or MOLLI variants, and detects cardiac amyloidosis with the same diagnostic accuracy as conventional T1 analysis. Z-score mapping provides a means to compare native T1 results acquired with MOLLI across different CMR platforms

    Accelerated discovery of two crystal structure types in a complex inorganic phase field

    Get PDF
    The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2,3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4,5,6 and predicting compositions for known crystal structures7,8, with notable successes9,10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8,11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them
    corecore