10 research outputs found

    Induction of dendritic cell costimulator molecule expression is suppressed by T cells in the absence of antigen-specific signalling: role of cluster formation, CD40 and HLA-class II for dendritic cell activation

    No full text
    Full activation of T lymphocytes by dendritic cells (DC) during antigen presentation is known to require the interaction of several inducible receptor–ligand pairs. We have postulated that the reciprocal activation of DC by T lymphocytes is also important. Potential signalling molecules that might increase the stimulatory capacity of DC during antigen presentation to T lymphocytes were tested using an in vitro model. Fresh human blood DC were cocultured with CD4+ and CD8+ allogeneic or with autologous T lymphocytes plus Staphylococcus superantigen A (SEA). Surprisingly, costimulator expression on DC cocultured with T lymphocytes was reduced in comparison to DC cultured alone. However, the minority (10–30%) of DC clustering with T lymphocytes showed antigen-specific up-regulation of the CD40, CD80 and CD86 costimulator molecules, whereas the non-clustered DC (70–90%) had less up-regulation than control DC cultured alone and did not respond to antigen-specific triggering. Monoclonal antibodies (mAb) to CD40 ligand (CD40L) and human leucocyte antigen (HLA)-DR, but not lymphocyte function-associated antigen-1 (LFA-1), LFA-3 or HLA-class I, significantly inhibited the T-lymphocyte induction of DC costimulator expression. Since HLA-class II, but not HLA-class I mAb, inhibited allogeneic T-lymphocyte-mediated activation of DC, CD4 T lymphocytes appear to be the main subset activating DC in the mixed lymphocyte reaction. Cross-linking of CD40, but not HLA-class II, up-regulated DC or B-cell costimulator expression. Although direct class II signalling does not appear to play a role in DC activation, antigen-specific T-cell recognition contributes via other mechanisms to regulate DC activation

    Composted MSW Effects on Soil Properties and Native Vegetation in a Degraded Semiarid Shrubland

    No full text
    Three rates of dried composted MSW (40, 80 and 120 Mg ha−1) were surface applied to a degraded semiarid shrubland site near Madrid in central Spain. Various soil and plant parameters were determined one year after its application. MSW amendment had an effect on soil chemistry and nutrient levels. Available P and K, concentration of N-NO3 and EC. increased significantly after the MSW application. The concentration of total soil heavy metals, Zn, Pb, Cd, Ni, Cr and Cu rose with the application of MSW as compared with the control plot, but these increases were only significant in total Zn, Pb and Cu. Zn and Cu amounts of DTPA-extractable soil were also significantly higher in the amended soil. Total plant cover increased significantly in the plots treated with low and intermediate MSW rates. Total biomass production increased as compost rates were added but this rise is not proportional to the amount of MSW added. The degraded soil used in this study may require MSW rates up to 80 Mg ha−1 to improve soil chemical properties as well as to produce minimal changes in the native vegetation. © 2000 Taylor and Francis

    Thermal-Stable Proteins of Fruit of Long-Living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique

    No full text
    Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have viability as long as ~1300 years determined by direct radiocarbon-dating, having a germination rate of 84%. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is considered one of the major factors that contribute to fruit longevity. Proteins that are heat stable and have protective function may be equally important to seed viability. We show proteins of Nelumbo fruit that are able to withstand heating, 31% of which remained soluble in the 110°C-treated embryo-axis of a 549-yr-old fruit and 76% retained fluidity in its cotyledons. Genome of Nelumbo is published. The amino-acid sequences of 11 “thermal proteins” (soluble at 100°C) of modern Nelumbo embryo-axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal-hyperthermophile Methancaldococcus jannaschii (Mj; an anaerobic methanogen having a growth optimum of 85°C) and with five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half of the Nelumbo thermal proteins (55%) are present in the archaean Mj, indicating their long-term durability and history. One Nelumbo protein-repair enzyme exhibits activity at 100°C, having a higher heat-tolerance than that of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is supplemented

    Genetic Control of Kidney Morphogenesis

    No full text
    corecore