22 research outputs found

    Effects of Peer-education on Quality of Life in Adults with Type 2 Diabetes

    Get PDF
    Aims: Diabetes is the most prevalent metabolic disease in human being. Self-care is the most important way of preventing complications. This study aimed at investigating the effects of peer-education on quality of life in adult patients with type 2 diabetes. Materials & Methods: This semi experimental study was conducted at a diabetes clinic affiliated to Gonabad University of medical sciences, Iran in 2017 among 80 patients with type 2 diabetes. Patients were selected based on available sampling method, and they were randomly divided into two groups, namely intervention and control (40 patients each group). The data of all patients were collected by demographic and disease information questionnaire and diabetic patient quality of life (QOL) questionnaire. The present study was carried out in three main steps: In the first step (before intervention), peers were trained by the researcher during four sessions. In the second step (intervention), quality of life of patients was assessed before training; then, patients in intervention group were trained and instructed during three sessions; the control group received the usual instruction, too. In the third step (one month later), quality of life of patients in both groups was assessed. The data were analyzed by SPSS statistics software Version 20, using Chi-square, Fisher, independent t test, paired t test, Mann-Whitney U, and Wilcoxon. Findings: The mean scores of quality of life in intervention group did not have any significant difference with control group before instruction (p>0.05). After instruction, the mean scores of quality of life in the intervention group compared with the control group increased significantly (p<0.001). Conclusion: Peer education improves quality of life in adult patients with type 2 diabetes

    Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review

    Get PDF
    With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior

    MicroRNAs and exosomes in depression: Potential diagnostic biomarkers

    No full text
    Depression is known as one of important psychiatric disorders which could be associated with disability among various populations. Diagnostic and statistical manual of mental disorders, 4th edition (DSM-IV) and international statistical classification of diseases and related health problems (ICD-10) could be used as subjective diagnostic schemes for identification of mental disorders such as depression. Utilization of subjective diagnostic schemes are associated with limitations. Hence, it seems that employing of new diagnosis platforms is required. Multiple lines of evidence indicated that measurement of several biomarkers could be useful for detection patients with depression. Among of various types of biomarkers, microRNAs (miRNAs) have been emerged as powerful tools for diagnosis patients with depression. MiRNAs are small non-coding RNAs which act as epigenetic regulators. It has been showed that these molecules have critical roles in pathogenesis of many diseases such as depression. These molecules exert their effects via targeting a variety of cellular and molecular pathways involved in initiation and progression of depression. Hence, miRNAs could be used as diagnostic and therapeutic biomarkers in patients with depression. Besides miRNAs, exosomes as nano- carriers could have been emerged as diagnostic biomarkers in several diseases such as depression. These vesicles are able to carry several cargos such as DNAs, proteins, mRNAs, and miRNAs to recipient cells. Here, we summarized several miRNAs involved in pathogenesis and response to treatment of depression which could be used as diagnostic biomarkers. Moreover, we highlighted exosomes as new diagnostic biomarkers for patients with depression. © 2017 Wiley Periodicals, Inc

    MicroRNAs and exosomes in depression: Potential diagnostic biomarkers

    No full text
    Depression is known as one of important psychiatric disorders which could be associated with disability among various populations. Diagnostic and statistical manual of mental disorders, 4th edition (DSM-IV) and international statistical classification of diseases and related health problems (ICD-10) could be used as subjective diagnostic schemes for identification of mental disorders such as depression. Utilization of subjective diagnostic schemes are associated with limitations. Hence, it seems that employing of new diagnosis platforms is required. Multiple lines of evidence indicated that measurement of several biomarkers could be useful for detection patients with depression. Among of various types of biomarkers, microRNAs (miRNAs) have been emerged as powerful tools for diagnosis patients with depression. MiRNAs are small non-coding RNAs which act as epigenetic regulators. It has been showed that these molecules have critical roles in pathogenesis of many diseases such as depression. These molecules exert their effects via targeting a variety of cellular and molecular pathways involved in initiation and progression of depression. Hence, miRNAs could be used as diagnostic and therapeutic biomarkers in patients with depression. Besides miRNAs, exosomes as nano- carriers could have been emerged as diagnostic biomarkers in several diseases such as depression. These vesicles are able to carry several cargos such as DNAs, proteins, mRNAs, and miRNAs to recipient cells. Here, we summarized several miRNAs involved in pathogenesis and response to treatment of depression which could be used as diagnostic biomarkers. Moreover, we highlighted exosomes as new diagnostic biomarkers for patients with depression. © 2017 Wiley Periodicals, Inc
    corecore