28 research outputs found

    Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial

    Get PDF
    <div><p>Background</p><p>Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension.</p><p>Methods and findings</p><p>To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow.</p><p>Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the AKT/eNOS/NO signaling pathway in the kidney. In the randomized clinical study, infusion of serelaxin for 120 min increased total renal arterial blood flow by 65% (95% CI 40%, 95%; <i>p <</i> 0.001) from baseline. Administration of serelaxin was safe and well tolerated, with no detrimental effect on systemic blood pressure or hepatic perfusion. The clinical study’s main limitations were the relatively small sample size and stable, well-compensated population.</p><p>Conclusions</p><p>Our mechanistic findings in rat models and exploratory study in human cirrhosis suggest the therapeutic potential of selective renal vasodilation using serelaxin as a new treatment for renal dysfunction in cirrhosis, although further validation in patients with more advanced cirrhosis and renal dysfunction is required.</p><p>Trial registration</p><p>ClinicalTrials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT01640964" target="_blank">NCT01640964</a></p></div

    GPCRs as potential therapeutic targets in preeclampsia

    No full text
    Preeclampsia is an important obstetric complication that arises in 5% of women after the 20(th) week of gestation, for which there is no specific therapy and no cure. Although much of the recent investigation in this field has focused on soluble forms of the angiogenic membrane receptor tyrosine kinase Flt1 and the transforming growth factor β co-receptor Endoglin, there is significant clinical potential for several GPCR targets and their agonists or antagonists in preeclampsia. In this review, we discuss several of the most promising candidates in this category, including calcitonin receptor-like receptor / receptor activity modifying protein 1 complexes, the angiotensin AT1, 2 and Mas receptors, and the relaxin receptor RXFP1. We also address some of the controversies surrounding the roles and therapeutic potential of these GPCRs and their (ant)agonists in preeclampsia

    A topical hydrogel with deferiprone and gallium-protoporphyrin targets bacterial iron metabolism and has antibiofilm activity

    No full text
    Accepted manuscript posted online 10 April 2017Many infectious diseases are associated with multidrug-resistant (MDR) bacteria residing in biofilms that require high antibiotic concentrations. While oral drug delivery is frequently ineffective, topical treatments have the potential to deliver higher drug concentrations to the infection site while reducing systemic side effects. This study determined the antibiofilm activity of a surgical wound gel loaded with the iron chelator deferiprone (Def) and the heme analogue gallium-protoporphyrin (GaPP), alone and in combination with ciprofloxacin. Activity against MDR Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter johnsonii biofilms was assessed in the colony biofilm and artificial wound model by enumeration of CFU and correlative light/electron microscopy. While Staphylococcus biofilms were equally susceptible to GaPP and Def-GaPP gels (log10 reduction of 3.8 and 3.7, respectively), the Def-GaPP combination was crucial for significant activity against P. aeruginosa biofilms (log10 reduction of 1.3 for GaPP and 3.3 for Def-GaPP). When Def-GaPP gel was combined with ciprofloxacin, the efficacy exceeded the activity of the individual compounds. Def-GaPP delivered in a surgical wound gel showed significant antibiofilm activity against different MDR strains and could enhance the gel's wound-healing properties. Moreover, Def-GaPP indicated a potentiation of ciprofloxacin. This antibiofilm strategy has potential for clinical utilization as a therapy for topical biofilm-related infections.Katharina Richter, Nicky Thomas, Jolien Claeys, Jonathan McGuane, Clive A. Prestidge, Tom Coenye, Peter-John Wormald, Sarah Vreugd

    Matrix metalloproteinase-2 activity, protein, mRNA, and tissue inhibitors in small arteries from pregnant and relaxin-treated nonpregnant rats

    No full text
    Vascular gelatinase activity is essential for pregnancy- and relaxin (Rlx)-induced renal vasodilation and hyperfiltration in rats. The objective of this study was to further elucidate the mechanisms for the increase in vascular matrix metalloproteinase (MMP)-2 activity caused by pregnancy and Rlx. We first corroborated our earlier work by showing that pro- and active forms of MMP-2 were increased in small renal arteries from pregnant compared with virgin rats and Rlx-treated compared with vehicle-treated nonpregnant rats. We next investigated other artery types and showed that MMP-2 activity was upregulated in mesenteric arteries from pregnant rats (pro-MMP-2 by 50% and active MMP-2 by 40%, both P<0.05) and from Rlx-treated nonpregnant rats (pro-MMP-2 by 50% and active MMP-2 by 90%, both P<0.005) compared with their respective controls. To corroborate these results obtained by gelatin zymography, pro-MMP-2 protein was determined by Western analysis in the same small arteries. Pro-MMP-2 protein was increased in small renal arteries from pregnant compared with virgin rats and from Rlx- compared with vehicle-treated nonpregnant rats: pro-MMP-2-to-beta-actin ratio=0.29 vs. 0.21 (P<0.01) and 0.43 vs. 0.32 (P<0.005). Findings were similar for mesenteric arteries. MMP-2 mRNA as measured by real-time PCR was increased in small renal arteries from pregnant and Rlx-treated nonpregnant rats compared with their respective controls. There were no significant differences in tissue inhibitor of metalloproteinase (TIMP-1 or TIMP-2) activity by reverse zymography in small renal arteries. Thus increases in MMP-2 mRNA and protein expression are major factors contributing to increased MMP-2 activity in small arteries from pregnant and Rlx-treated nonpregnant rats

    Angiogenic growth factors are new and essential players in the sustained relaxin vasodilatory pathway in rodents and humans

    No full text
    Relaxin is emerging as an important vasodilator of pregnancy and is being tested for afterload reduction in acute heart failure. However, the mechanisms underlying relaxin-induced vasodilation are incompletely understood. The aims of this study were to establish a new in vitro model for relaxin-induced vasodilation and to use this approach, as well as chronically instrumented, conscious rats, to investigate the role of angiogenic growth factors in the relaxin vasodilatory pathway. Incubation of rat and mouse small renal arteries with recombinant human H2 relaxin for 3 hours in vitro attenuated myogenic constriction, which was blocked by inhibitors of gelatinases, the endothelin B receptor, and NO synthase. These findings corroborate ex vivo observations in arteries isolated from relaxin-infused nonpregnant and midterm pregnant rats, thereby validating the new experimental approach and enabling the study of human arteries. Incubation of small human subcutaneous arteries with relaxin for 3 hours in vitro also attenuated myogenic constriction through the same molecular intermediates. Vascular endothelial growth factor receptor inhibitor SU5416, 3 different vascular endothelial growth factor, and 2 different placental growth factor neutralizing antibodies prevented relaxin from attenuating myogenic constriction in rat and mouse small renal and human subcutaneous arteries. SU5416 administration also prevented relaxin-induced renal vasodilation and hyperfiltration in chronically instrumented, conscious rats. Small renal arteries isolated from these rats demonstrated increased matrix metalloproteinase 2 activity in the relaxin-infused group, which was not prevented by SU5416. We conclude that there is concordance of relaxin vasodilatory mechanisms in rats, mice, and humans, and angiogenic growth factors are novel and essential intermediates

    Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis

    No full text
    We have evaluated the effectiveness of systemic adenovirally delivered mouse relaxin on reversing fibrosis in a transgenic murine model of fibrotic cardiomyopathy due to β2-adrenergic receptor (β2AR) overexpression. Recombinant adenoviruses expressing green fluorescent protein (Ad-GFP), rat relaxin (Ad-rRLN) and mouse relaxin (Ad-mRLN) were generated and Ad-rRLN and Ad-mRLN were demonstrated to direct the expression of bioactive relaxin peptides in vitro. A single systemic injection of Ad-mRLN resulted in transgene expression in the liver and bioactive relaxin peptide in the plasma. Ad-mRLN, but not Ad-GFP, treatment reversed the increased left ventricular collagen content in β2AR mice to control levels without affecting collagen levels in other heart chambers or in the lung and kidney. Hence a single systemic injection of adenovirus producing mouse relaxin reverses cardiac fibrosis without adversely affecting normal collagen levels in other organs and establishes the potential for the use of relaxin gene therapy for the treatment of cardiac fibrosis

    Seminal Plasma Promotes Lesion Development in a Xenograft Model of Endometriosis

    No full text
    The factors that predispose one-tenth of reproductive-aged women to endometriosis are poorly understood. We determined that genetic deficiency in transforming growth factor β1 impairs endometriosis-like lesion growth in mice. Given that seminal plasma is an abundant source of transforming growth factor β, we evaluated the effect of exposure to seminal plasma on the growth of endometrial lesions. Human endometrial explants were exposed to seminal plasma or to control medium before transfer to Prkdc(scid)-mutant (severe combined immunodeficient) mice. Xenografts exposed to seminal plasma showed an eightfold increase in volume and a 4.3-fold increase in weight after 14 days. These increases were associated with increased proliferation of endometrial epithelial cells and enhanced survival and proliferation of human stromal cells compared with those in control lesions, in which human stromal cell persistence was negligible. Although the distribution of macrophages was altered, their number and activation status did not change in response to seminal plasma. Seminal plasma stimulated the production of a variety of cytokines in endometrial tissue, including growth-regulated oncogene, granulocyte macrophage colony-stimulating factor, and IL-1β. These data suggest that seminal plasma enhances the formation of endometriosis-like lesion via a direct effect on endometrial cell survival and proliferation, rather than via macrophage-mediated mechanisms. These findings raise the possibility that endometrial exposure to seminal plasma could contribute to endometriotic disease progression in women
    corecore