2,389 research outputs found

    Recalibrating the Wide-field Infrared Survey Explorer (WISE) W4 Filter

    Get PDF
    We present a revised effective wavelength and photometric calibration for the Wide-field Infrared Survey Explorer (WISE) W4 band, including tests of empirically motivated modifications to its pre-launch laboratory-measured relative system response curve. We derived these by comparing measured W4 photometry with photometry synthesised from spectra of galaxies and planetary nebulae. The difference between measured and synthesised photometry using the pre-launch laboratory-measured W4 relative system response can be as large as 0.3 mag for galaxies and 1 mag for planetary nebulae. We find the W4 effective wavelength should be revised upward by 3.3%, from 22.1 micron to 22.8 micron, and the W4 AB magnitude of Vega should be revised from m = 6.59 to m = 6.66. In an attempt to reproduce the observed W4 photometry, we tested three modifications to the pre-launch laboratory-measured W4 relative system response curve, all of which have an effective wavelength of 22.8 micron. Of the three relative system response curve models tested, a model that matches the laboratory-measured relative system response curve, but has the wavelengths increased by 3.3% (or 0.73 micron) achieves reasonable agreement between the measured and synthesised photometry.Comment: Accepted for publication in Publications of the Astronomical Society of Australia, 6 pages, 4 figures, 1 tabl

    Survey Simulations of a New Near-Earth Asteroid Detection System

    Get PDF
    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes >=140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of new large-format 10 um detector arrays capable of operating at ~35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer and WISE data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.Comment: AJ accepted; corrected typ

    From Spitzer Galaxy Photometry to Tully-Fisher Distances

    Get PDF
    This paper involves a data release of the observational campaign: Cosmicflows with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the survey is presented. An additional ~ 400 galaxies from various other Spitzer surveys are also analyzed. CFS complements the Spitzer Survey of Stellar Structure in Galaxies, that provides photometry for an additional 2352 galaxies, by extending observations to low galactic latitudes (|b|<30 degrees). Among these galaxies are calibrators, selected in K band, of the Tully-Fisher relation. The addition of new calibrators demonstrate the robustness of the previously released calibration. Our estimate of the Hubble constant using supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc. Distance-derived radial peculiar velocities, for the 1935 galaxies with all the available parameters, will be incorporated into a new data release of the Cosmicflows project. The size of the previous catalog will be increased by 20%, including spatial regions close to the Zone of Avoidance.Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 6 table

    Interplay between function and structure in complex networks

    Get PDF
    We show that abrupt structural transitions can arise in functionally optimal networks, driven by small changes in the level of transport congestion. Our results offer an explanation as to why so many diverse species of network structure arise in Nature (e.g. fungal systems) under essentially the same environmental conditions. Our findings are based on an exactly solvable model system which mimics a variety of biological and social networks. We then extend our analysis by introducing a novel renormalization scheme involving cost motifs, to describe analytically the average shortest path across multiple-ring-and-hub networks. As a consequence, we uncover a 'skin effect' whereby the structure of the inner multi-ring core can cease to play any role in terms of determining the average shortest path across the network.Comment: Expanded version of physics/0508228 with additional new result

    Variability Flagging in the Wide-field Infrared Survey Explorer Preliminary Data Release

    Get PDF
    The Wide-field Infrared Survey Explorer Preliminary Data Release Source Catalog contains over 257 million objects. We describe the method used to flag variable source candidates in the Catalog. Using a method based on the chi-square of single-exposure flux measurements, we generated a variability flag for each object, and have identified almost 460,000 candidate sources that exhibit significant flux variability with greater than ~7σ confidence. We discuss the flagging method in detail and describe its benefits and limitations. We also present results from the flagging method, including example light curves of several types of variable sources including Algol-type eclipsing binaries, RR Lyr, W UMa, and a blazar candidate

    Multi-Objective Optimisation of Aero-Engine Compressors

    Get PDF
    The design of a new aero-engine compressor is a complex task: design objectives are almost always conflicting, the design space is large, nonlinear and highly constrained, and the effects of some geometrical changes can be difficult to predict. Computational fluid dynamics (CFD) is now widely used in real-world applications and especially in the design of turbomachinery. However, the large design space and the time required for the numerical simulation of the whole turbomachine make the use of CFD in the early phases of the design process infeasible: preliminary design relies on a number of physical and empirical relations, still quite similar to those used in the early history of turbomachinery design. In this study, 87 independent parameters were used to define the geometry of a 7-stage compressor, the performance of which was evaluated using proprietary design codes for mean-line, multi-stage analysis. The effects on efficiency and surge margin of changing 44 design variables were analysed and their optimal values found by means of deterministic (gradient-based) and meta-heuristic (Tabu Search [TS]) optimisation methods. The results show clearly how the use of meta-heuristic optimisation tools can improve the preliminary design of turbomachinery, allowing a more thorough but still rapid exploration of the design space to identify the most promising regions that will then be verified and further analysed with higher fidelity tools. The results also reveal the impact of introducing various constraints into the design process, highlighting the effects of design decomposition
    corecore