2,264 research outputs found

    Would Bohr be born if Bohm were born before Born?

    Full text link
    I discuss a hypothetical historical context in which a Bohm-like deterministic interpretation of the Schrodinger equation could have been proposed before the Born probabilistic interpretation and argue that in such a context the Copenhagen (Bohr) interpretation would probably have never achieved great popularity among physicists.Comment: 5 pages, revised, accepted for publication in Am. J. Phy

    Lifting Bell inequalities

    Get PDF
    A Bell inequality defined for a specific experimental configuration can always be extended to a situation involving more observers, measurement settings, or measurement outcomes. In this article, such "liftings" of Bell inequalities are studied. It is shown that if the original inequality defines a facet of the polytope of local joint outcome probabilities then the lifted one also defines a facet of the more complex polytope

    Quantum mechanics is about quantum information

    Full text link
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive -- just as, following Einstein's special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.Comment: 17 pages, forthcoming in Foundations of Physics Festschrift issue for James Cushing. Revised version: some paragraphs have been added to the final section clarifying the argument, and various minor clarifying remarks have been added throughout the tex

    Non-Linearity Corrections and Statistical Uncertainties Associated with Near-Infrared Arrays

    Full text link
    We derive general equations for non-linearity corrections and statistical uncertainty (variance) estimates for data acquired with near-infrared detectors employing correlated double sampling, multiple correlated double sampling (Fowler sampling) and uniformly-spaced continuous readout techniques. We compare our equation for the variance on each pixel associated with Fowler sampling with measurements obtained from data taken with the array installed in the near-infrared cross-dispersed spectrograph (SpeX) at the NASA Infrared Telescope Facility and find that it provides an accurate representation of the empirical results. This comparison also reveals that the read noise associated with a single readout of the SpeX array increases with the number of non-destructive reads, n_r, as n_r^0.16. This implies that the {effective} read noise of a stored image decreases as n_r^-0.34, shallower than the expected rate of n_r^-0.5. The cause of this read noise behavior is uncertain, but may be due to heating of the array as a result of the multiple read outs. Such behavior may be generic to arrays that employ correlated or multiple correlated double sampling readouts.Comment: 21 pages, accepted by PAS

    THEMIS observes possible cave skylights on Mars

    Get PDF
    Seven possible skylight entrances into Martian caves were observed on and around the flanks of Arsia Mons by the Mars Odyssey Thermal Emission Imaging System (THEMIS). Distinct from impact craters, collapse pits or any other surface feature on Mars, these candidates appear to be deep dark holes at visible wavelengths while infrared observations show their thermal behaviors to be consistent with subsurface materials. Diameters range from 100 m to 225 m, and derived minimum depths range between 68 m and 130 m. Most candidates seem directly related to pitcraters, and may have formed in a similar manner with overhanging ceilings that remain intact

    Grounding Bohmian Mechanics in Weak Values and Bayesianism

    Full text link
    Bohmian mechanics (BM) is a popular interpretation of quantum mechanics in which particles have real positions. The velocity of a point x in configuration space is defined as the standard probability current j(x) divided by the probability density P(x). However, this ``standard'' j is in fact only one of infinitely many that transform correctly and satisfy \dot P + \del . j=0. In this article I show that there is a unique j that can be determined experimentally as a weak value using techniques that would make sense to a classical physicist. Moreover, this operationally defined j equals the standard j, so, assuming \dot x = j/P, the possible Bohmian paths can also be determined experimentally from a large enough ensemble. Furthermore, this approach to deriving BM singles out x as the hidden variable, because (for example) the operationally defined momentum current is in general incompatible with the evolution of the momentum distribution. Finally I discuss how, in this setting, the usual quantum probabilities can be derived from a Bayesian standpoint, via the principle of indifference.Comment: 11 page

    Hypersurface Bohm-Dirac models

    Full text link
    We define a class of Lorentz invariant Bohmian quantum models for N entangled but noninteracting Dirac particles. Lorentz invariance is achieved for these models through the incorporation of an additional dynamical space-time structure provided by a foliation of space-time. These models can be regarded as the extension of Bohm's model for N Dirac particles, corresponding to the foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to more general foliations. As with Bohm's model, there exists for these models an equivariant measure on the leaves of the foliation. This makes possible a simple statistical analysis of position correlations analogous to the equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio

    Near-Infrared Spectroscopy of McNeil's Nebula Object

    Full text link
    We present 0.8-5.2 micron spectroscopy of the compact source at the base of a variable nebula (McNeil's Nebula Object) in the Lynds 1630 dark cloud that went into outburst in late 2003. The spectrum of this object reveals an extremely red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice absorption feature, and a solid state CO absorption feature at 4.7 microns. In addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen lines exhibit P Cygni profiles, as do two lines of He I, although the emission features are very weak in the latter. The Brackett lines, however, are seen to be purely in emission. The P Cygni profiles clearly indicate that mass outflow is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not yield consistent estimates of the reddening, nor do they agree with the extinction estimated from the ice feature (A_V ~ 11). We propose that these lines are optically thick and are produced in a dense, ionized wind. The near-infrared spectrum does not appear similar to any known FUor or EXor object. However, all evidence suggests that McNeil's Nebula Object is a heavily-embedded low-mass Class I protostar, surrounded by a disk, whose brightening is due to a recent accretion event.Comment: 11 pages, 2 ps figures, accepted for publication in ApJ Letter

    The density matrix in the de Broglie-Bohm approach

    Full text link
    If the density matrix is treated as an objective description of individual systems, it may become possible to attribute the same objective significance to statistical mechanical properties, such as entropy or temperature, as to properties such as mass or energy. It is shown that the de Broglie-Bohm interpretation of quantum theory can be consistently applied to density matrices as a description of individual systems. The resultant trajectories are examined for the case of the delayed choice interferometer, for which Bell appears to suggest that such an interpretation is not possible. Bell's argument is shown to be based upon a different understanding of the density matrix to that proposed here.Comment: 15 pages, 4 figure

    Solving the measurement problem: de Broglie-Bohm loses out to Everett

    Get PDF
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.Comment: 20 pages; submitted to special issue of Foundations of Physics, in honour of James T. Cushin
    • 

    corecore