1,009 research outputs found

    Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix

    Full text link
    Exchange biased composites of ferromagnetic single-domain Ni nanoparticles embedded within large grains of MnO have been prepared by reduction of Nix_xMn1−x_{1-x}O4_4 phases in flowing hydrogen. The Ni precipitates are 15-30 nm in extent, and the majority are completely encased within the MnO matrix. The manner in which the Ni nanoparticles are spontaneously formed imparts a high ferromagnetic- antiferromagnetic interface/volume ratio, which results in substantial exchange bias effects. Exchange bias fields of up to 100 Oe are observed, in cases where the starting Ni content xx in the precursor Nix_xMn1−x_{1-x}O4_4 phase is small. For particles of approximately the same size, the exchange bias leads to significant hardening of the magnetization, with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure

    Volatility dynamics of nymex natural gas futures prices

    Get PDF
    Despite their importance in pricing futures and other derivative contracts, seasonalvariations in mean and variance of energy prices have not been fully captured inprevious studies of energy prices. We examine the volatility dynamics of daily naturalgas futures traded on the NYMEX via the partially overlapping time-series (POTS) modelof Smith (2005, Journal of Applied Econometrics). We illustrate that the volatility of dailyprice changes of natural gas exhibits strong seasonality, even as the volatility increases asa contract approaches its expiration, a time-to-maturity effect. Our analysis reveals thatthe persistence of price shocks and, hence, the correlations among concurrently tradedcontracts, also exhibit substantial seasonal and cross-sectional variation. These volatilitypatterns we estimate are closely related to the seasonal cycle of US natural gas storage ina way consistent with the theory of storage. We demonstrate that, by ignoring theseasonality in the volatility dynamics of natural gas futures prices, previous studies havesuggested sub-optimal hedging strategies

    Self-field effects upon the critical current density of flat superconducting strips

    Full text link
    We develop a general theory to account self-consistently for self-field effects upon the average transport critical current density Jc of a flat type-II superconducting strip in the mixed state when the bulk pinning is characterized by a field-dependent depinning critical current density Jp(B), where B is the local magnetic flux density. We first consider the possibility of both bulk and edge-pinning contributions but conclude that bulk pinning dominates over geometrical edge-barrier effects in state-of-the-art YBCO films and prototype second-generation coated conductors. We apply our theory using the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba) as a function of a perpendicular applied magnetic induction Ba and show how Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux density zero at the strip's edge. However, Jc(Ba) is suppressed relative to JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference

    The usefulness of diagnostic imaging for the assessment of pain symptoms in temporomandibular disorders

    Get PDF
    SummaryThe causes of pain symptoms in the temporomandibular joint (TMJ) and masticatory muscle (MM) regions may not be determined by clinical examination alone. In this review, we document that pain symptoms of the TMJ and MM regions in patients with temporomandibular disorders (TMDs) are associated with computed tomography and magnetic resonance (MR) findings of internal derangement, joint effusion, osteoarthritis, and bone marrow edema. However, it is emphasized that these imaging findings must not be regarded as the unique and dominant factors in defining TMJ pain. High signal intensity and prominent enhancement of the posterior disk attachment on fat saturation T2-weighted imaging and dynamic MR imaging with contrast material are closely correlated with the severity of TMJ pain. Magnetic transfer contrast, MR spectroscopy, diffusion tensor imaging, and ultrasonography findings have helped identify intramuscular edema and contracture as one of the causes of MM pain and fatigue. Recently, changes in brain as detected by functional MR neuroimaging have been associated with changes in the TMJ and MM regions. The thalamus, the primary somatosensory cortex, the insula, and the anterior and mid-cinglate cortices are most frequently associated with TMD pain

    Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes

    Get PDF
    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.Comment: 25 pages, 13 figure

    Microstructure and Structural Defects in MgB2 Superconductor

    Full text link
    We report a detailed study of the microstructure and defects in sintered polycrystalline MgB2. Both TEM and x-ray data reveal that MgO is the major second-phase in our bulk samples. Although MgB2 and MgO have different crystal symmetries, being P6/mmm and Fm-3m, respectively, their stacking sequence of Mg and B (or O) and lattice spacings in certain crystallographic orientations are very similar. The size of MgO varies from 10~500nm, and its mismatch with the MgB2 matrix can be a source for dislocations. Dislocations in MgB2 often have a Burgers vector of . 1/3 and 1/3 partial dislocations and their associated stacking faults were also observed. Since both dislocations and stacking faults are located in the (001) basal plane, flux pinning anisotropy is expected. Diffuse scattering analysis suggests that the correlation length along the c-axis for defect-free basal planes is about 50nm. (001) twist grain-boundaries, formed by rotations along the c-axis, are major grain boundaries in MgB2 as a result of the out-of-plane weak bonding between Mg and B atoms. An excess of Mg was observed in some grain boundaries. High-resolution nano-probe EELS reveals that there is a difference in near edge structure of the boron K-edge acquired from grain boundaries and grain interiors. The change at the edge threshold may be suggestive of variation of the hole concentration that would significantly alter boundary superconductivity.Comment: 20 pages and 12 figure

    Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    Get PDF
    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomicresolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångströmsized electron beam. To truly enable control, however, it is vital to understand the relevant atomicscale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward
    • …
    corecore