42 research outputs found

    Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase

    Get PDF
    The existence of a non-lysosomal glucosylceramidase in human cells has been documented (van Weely, S., Brandsma, M., Strijland, A., Tager, J. M., and Aerts, J. M. F. G. (1993) Biochim. Biophys. Acta 1181, 55-62). Hypothetically, the activity of this enzyme, which is localized near the cell surface, may influence ceramide-mediated signaling processes. To obtain insight in the physiological importance of the non-lysosomal glucosylceramidase, the availability of specific inhibitors would be helpful. Here we report on the generation of hydrophobic deoxynojirimycin (DNM) derivatives that potently inhibit the enzyme. The inhibitors were designed on the basis of the known features of the non-lysosomal glucosylceramidase and consist of a DNM moiety, an N-alkyl spacer, and a large hydrophobic group that promotes insertion in membranes. In particular, N-(5-adamantane-1-yl-methoxy)pentyl)-DNM is a very powerful inhibitor of the non-lysosomal glucosylceramidase at nanomolar concentrations. At such concentrations, the lysosomal glucocerebrosidase and alpha-glucosidase, the glucosylceramide synthase, and the N-linked glycan-trimming alpha-glucosidases of the endoplasmic reticulum are not affecte

    Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease

    No full text
    In addition to the lysosomal glucocerebrosidase, a distinct beta-glucosidase that is also active towards glucosylceramide could be demonstrated in various human tissues and cell types. Subcellular fractionation analysis revealed that the hitherto undescribed glucocerebrosidase is not located in lysosomes but in compartments with a considerably lower density. The non-lysosomal glucocerebrosidase differed in several respects from lysosomal glucocerebrosidase. The non-lysosomal isoenzyme proved to be tightly membrane-bound, whereas lysosomal glucocerebrosidase is weakly membrane-associated. The pH optimum of the non-lysosomal isoenzyme is less acidic than that of lysosomal glucocerebrosidase. Non-lysosomal glucocerebrosidase, in contrast to the lysosomal isoenzyme, was not inhibited by low concentrations of conduritol B-epoxide, was markedly inhibited by taurocholate, was not stimulated in activity by the lysosomal activator protein saposin C, and was not deficient in patients with Gaucher disease. Non-lysosomal glucocerebrosidase proved to be less sensitive to inhibition by castanospermine or deoxynojirimycin but more sensitive to inhibition by D-gluconolactone than the lysosomal glucocerebrosidase. The physiological function of this second, non-lysosomal, glucocerebrosidase is as yet unknow

    Accumulation of weak bases in relation to intralysosomal pH in cultured human skin fibroblasts

    No full text
    The volume of the lysosomal compartment in cultured human skin fibroblasts was estimated from the distribution between the cells and the medium of tracer amounts of labelled methylamine and chloroquine, which accumulate in the lysosomes, 2,2-dimethyloxazolidine-2,4-dione, which accumulates in the soluble cytoplasmic compartment relative to the lysosomes, and sucrose, which is excluded by the cells. In a foetal fibroblast line, the fractional volume of the lysosomal compartment was 0.044 +/- 0.007 (n = 8). In fibroblasts from a patient with the I-cell disease, the fractional volume was 0.15. The fractional volume of the lysosomal compartment was used to calculate the intralysosomal pH from the accumulation of the weak bases in the cells. The mean value obtained was 5.29 +/- 0.04 (n = 8). In fibroblasts incubated with various concentrations of chloroquine, the fractional volume of the lysosomal compartment and the accumulation of chloroquine in the cells were used to calculate the concentration of chloroquine in the lysosomes. The intralysosomal concentration increased from 3 to 114 mM as the extracellular concentration increased from 1 to 100 microM. Concomitantly, the intralysosomal pH increased from 5.3 in the absence of chloroquine to 5.9 in the presence of 100 microM chloroquine. A similar increase in intralysosomal pH could be calculated in fibroblasts incubated with different concentrations of ammoni

    Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages

    No full text
    We have recently observed that chitotriosidase, a chitinolytic enzyme, is secreted by activated human macrophages and is markedly elevated in plasma of Gaucher disease patients (Hollak, C. E. M., van Weely, S., van Oers, M. H. J., and Aerts, J. M. F. G. (1994) J. Clin. Invest. 93, 1288-1292). Here, we report on the cloning of the corresponding cDNA. The nucleotide sequence of the cloned cDNA predicts a protein with amino acid sequences identical to those established for purified chitotriosidase. Secretion of active chitotriosidase was obtained after transient transfection of COS-1 cells with the cloned cDNA, confirming its identity as chitotriosidase cDNA. Chitotriosidase contains several regions with high homology to those present in chitinases from different species belonging to family 18 of glycosyl hydrolases. Northern blot analysis shows that expression of chitotriosidase mRNA occurs only at a late stage of differentiation of monocytes to activated macrophages in culture. Our results show that, in contrast to previous beliefs, human macrophages can synthesize a functional chitinase, a highly conserved enzyme with a strongly regulated expression. This enzyme may play a role in the degradation of chitin-containing pathogens and can be used as a marker for specific disease state

    Genetic and biochemical heterogeneity in patients with the rhizomelic form of chondrodysplasia punctata--a complementation study

    No full text
    The genetic relationship between 10 patients with clinical manifestations of rhizomelic chondrodysplasia punctata (RCDP) was studied by complementation analysis after somatic cell fusion. Biochemically, 9 out of the 10 patients were characterized by a partial deficiency of acyl-CoA: dihydroxyacetone phosphate acyltransferase (DHAP-AT) and an impairment of plasmalogen biosynthesis, phytanate catabolism and the maturation of peroxisomal 3-oxoacyl-CoA thiolase; 3-oxoacyl-CoA thiolase was strongly reduced in the peroxisomes of these patients. Fusion of fibroblasts from these 9 patients with Zellweger fibroblasts resulted in complementation as indicated by the restoration of DHAP-AT activity, plasmalogen biosynthesis, and punctate fluorescence after staining with a monoclonal antibody to peroxisomal thiolase. No complementation was observed after fusion of different combinations of the 9 RCDP cell lines, suggesting that they belong to a single complementation group. The tenth patient was characterized biochemically by a deficiency of DHAP-AT and an impairment of plasmalogen biosynthesis. However, maturation and localization of peroxisomal thiolase were normal. Fusion of fibroblasts from this patient with fibroblasts from the other 9 patients resulted in complementation as indicated by the restoration of plasmalogen biosynthesis. We conclude that mutations in at least two different genes can lead to the clinical phenotype of RCD

    Biosynthesis and intracellular transport of alpha-glucosidase and cathepsin D in normal and mutant human fibroblasts

    No full text
    In order to study the intracellular localization of the proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D in cultured human skin fibroblasts we have used incubation with glycyl-L-phenylalanine-beta-naphthylamide (Gly-Phe-NH-Nap) as described by Jadot et al. [Jadot, M., Colmant, C., Wattiaux-de Coninck, S. & Wattiaux, R. (1984) Biochem. J. 219,965-970] for the specific lysis of lysosomes. When a homogenate of fibroblasts was incubated for 20 min with 0.5 mM Gly-Phe-NH-Nap, a substrate for the lysosomal enzyme cathepsin C, the latency of the lysosomal enzymes alpha-glucosidase and beta-hexosaminidase decreased from 75% to 10% and their sedimentability from 75% to 20-30%. In contrast, treatment with Gly-Phe-NH-Nap had no significant effect on the latency of galactosyltransferase, a marker for the Golgi apparatus, and on the sedimentability of glutamate dehydrogenase and catalase, markers for mitochondria and peroxisomes, respectively. The maturation of alpha-glucosidase and cathepsin D in fibroblasts was studied by pulse-labelling with [35S]methionine, immunoprecipitation, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and fluorography. When homogenates of labelled fibroblasts were incubated with Gly-Phe-NH-Nap prior to immunoprecipitation, 70-80% of all proteolytically processed forms of metabolically labelled alpha-glucosidase and cathepsin D was recovered in the supernatant. The earliest proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D appeared to be coupled to their transport to the lysosomes. Although both enzymes are transported via the mannose-6-phosphate-specific transport system, the velocity with which they arrived in the lysosomes was consistently different. Whereas newly synthesized cathepsin D was found in the lysosomes 1 h after synthesis, alpha-glucosidase was detected only after 2-4 h. When a pulse-chase experiment was carried out in the presence of 10 mM NH4Cl there was a complete inhibition of the transport of cathepsin D and a partial inhibition of that of alpha-glucosidase to the lysosomes. Leupeptin, an inhibitor of lysosomal thiol proteinases, had no effect on the transport of labelled alpha-glucosidase to the lysosomes. However, the early processing steps in which the 110-kDa precursor is converted to the 95-kDa intermediate form of the enzyme were delayed, a transient 105-kDa form was observed and the conversion of the 95-kDa intermediate form to the 76-kDa mature form of the enzyme was completely inhibited.(ABSTRACT TRUNCATED AT 400 WORDS

    Transport and processing of endocytosed lysosomal alpha-glucosidase in cultured human skin fibroblasts

    No full text
    In the present study we have characterised the molecular products that arise from processing of a precursor form of alpha-glucosidase isolated from urine after endocytosis at 37 degrees C by cultured human skin fibroblasts. The urinary precursor (Mr 110 000) was processed to forms with Mr of 100 000, 80 000 and 74 000. These forms were approximately 4000 Da larger than the corresponding forms of endogenously synthesized alpha-glucosidase. Digestion of the different forms of the enzyme with endoglycosidase F showed that the differences in apparent molecular mass between the exogenous and corresponding endogenous forms were due to difference in glycosylation. Intracellular transport of endocytosed alpha-glucosidase was followed by incubating fibroblast homogenates with glycyl-L-phenylalanine-beta-naphthylamide (Gly-Phe-NH-Nap), which leads to specific lysis of lysosomes. Transport to the lysosomes was a fast process: within 45 min after endocytosis more than 50% of the enzyme was present in the lysosome. The first step in the processing of endocytosed alpha-glucosidase started in a Gly-Phe-NH-Nap-insensitive (prelysosomal) compartment, but further processing of the enzyme to lower-Mr forms was coupled to transport to the lysosomes. Processing of alpha-glucosidase after uptake at 20 degrees C was also studied. At this temperature the enzyme accumulated in an organelle with a low buoyant density, presumably the endosome; this compartment appeared to be heterogeneous, ranging in density from 1.04 g/ml to 1.08 g/ml. Under these conditions only the first step in the processing of the enzyme occurred. It is concluded that endocytosed enzyme is processed more rapidly than endogenously synthesized enzyme owing to the fact that endocytosed enzyme is transported more rapidly to the lysosomes. Furthermore, processing may start in a prelysosomal organell
    corecore