26 research outputs found

    Simulated Neutrino Signals of Low and Intermediate Energy Neutrinos on Cd Detectors

    Get PDF
    Neutrino-nucleus reactions cross sections, obtained for neutrino energies in the range εν ≤ 100–120 MeV (low- and intermediate-energy range), which refer to promising neutrino detection targets of current terrestrial neutrino experiments, are presented and discussed. At first, we evaluated original cross sections for elastic scattering of neutrinos produced from various astrophysical and laboratory neutrino sources with the most abundant Cd isotopes 112Cd, 114Cd, and 116Cd. These isotopes constitute the main material of the COBRA detector aiming to search for neutrinoless double beta decay events and neutrino-nucleus scattering events at the Gran Sasso laboratory (LNGS). The coherent ν-nucleus reaction channel addressed with emphasis here, dominates the neutral current ν-nucleus scattering, events of which have only recently been observed for a first time in the COHERENT experiment at Oak Ridge. Subsequently, simulated ν-signals expected to be recorded at Cd detectors are derived through the application of modern simulation techniques and employment of reliable neutrino distributions of astrophysical ν-sources (as the solar, supernova, and Earth neutrinos), as well as laboratory neutrinos (like the reactor neutrinos, the neutrinos produced from pion-muon decay at rest and the β-beam neutrinos produced from the acceleration of radioactive isotopes at storage rings as e.g., at CERN).PACS numbers: 26.50.+x, 25.30.Pt, 97.60.Bw, 25.30.-c, 23.40.Bw, 21.60.J

    Realistic Shell-Model Calculations for Proton-Rich N=50 Isotones

    Get PDF
    The structure of the N=50 isotones 98Cd, 97Ag, and 96Pd is studied in terms of shell model employing a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential. The single-hole energies are fixed by resorting to an analysis of the low-energy spectra of the isotones with A>= 91. Comparison shows that our results are in very satisfactory agreement with the available experimental data. This supports confidence in the predictions of our calculationsComment: 8 pages, 3 figures, to be published on Journal of Physics

    Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing

    Get PDF
    We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page

    Neutrinoless Double Beta Decay in Gauge Theories

    Full text link
    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. Its observation will severely constrain the existing models and signal that the neutrinos are massive Majorana particles. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the neutrino mass, the admixture of right handed currents etc, it may occur due to the R-parity violating supersymmetric (SUSY) interactions. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about 100 MeV. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25 per cent, almost regardless of the nuclear model. In the case of heavy neutrinos the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 and the experimental limits on the life times we have extracted new stringent limits on the average neutrino mass and on the R-parity violating coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st

    Theory of neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.Comment: 104 pages, 6 tables, 25 figures.References added. To appear in ROP (Reports on Progress in Physics), copyright RO

    Simulated neutrino signals of low and intermediate energy neutrinos on Cd detectors

    No full text
    Neutrino-nucleus reactions cross sections, obtained for neutrino energies in the range εν100120\varepsilon_{\nu}\leq 100-120 MeV (low- and intermediate-energy range), which refer to promising neutrino detection targets of current terrestrial neutrino experiments, are presented and discussed. At first, we evaluated original cross sections for elastic scattering of neutrinos produced from various astrophysical and laboratory neutrino sources with the most abundant Cd isotopes 112^{112}Cd, 114^{114}Cd and 116^{116}Cd. These isotopes constitute the main material of the COBRA detector aiming to search for neutrinoless double beta decay events and neutrino-nucleus scattering events at the Gran Sasso laboratory (LNGS). The coherent ν\nu-nucleus reaction channel addressed with emphasis here, dominates the neutral current ν\nu-nucleus scattering, events of which have only recently been observed for a first time in the COHERENT experiment at Oak Ridge. Subsequently, simulated ν\nu-signals expected to be recorded at Cd detectors are derived through the application of modern simulation techniques and employment of reliable neutrino distributions of astrophysical ν\nu-sources (as the solar, supernova and Earth neutrinos), as well as laboratory neutrinos (like the reactor neutrinos, the neutrinos produced from pion-muon decay at rest and the β\beta-beam neutrinos produced from the acceleration of radioactive isotopes at storage rings as e.g. at CERN)

    Structure of Ru96

    No full text
    corecore