1,765 research outputs found
Heat resistant protective hand covering
The heat resistant, protective glove is made up of first and second shell sections which define a palm side and a backside, respectively. The first shell section is made of a twill wave fabric of a temperature-resistant aromatic polyamide fiber. The second shell section is made of a knitted fabric of a temperature-resistant aromatic polyamide fiber. The first and second shell sections are secured to one another, e.g., by sewing, to provide the desired glove configuration and an opening for insertion of the wearer's hand. The protective glove also includes a first liner section which is secured to and overlies the inner surface of the first shell section and is made of a felt fabric of a temperature-resistant aromatic polyamide fiber and has a flame resistant, elastomenic coating on the surface facing and overlying the inner surface of the first shell section
Heat resistant protective hand covering
A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber
Flame resistant elastic elastomeric fiber
Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene
Flame retardant spandex type polyurethanes
Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned
Flame resistant elastomeric polymer development
Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials
Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant
Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc
On codimension two flats in Fermat-type arrangements
In the present note we study certain arrangements of codimension flats in
projective spaces, we call them "Fermat arrangements". We describe algebraic
properties of their defining ideals. In particular, we show that they provide
counterexamples to an expected containment relation between ordinary and
symbolic powers of homogeneous ideals.Comment: 9 page
Towards Mixed Gr{\"o}bner Basis Algorithms: the Multihomogeneous and Sparse Case
One of the biggest open problems in computational algebra is the design of
efficient algorithms for Gr{\"o}bner basis computations that take into account
the sparsity of the input polynomials. We can perform such computations in the
case of unmixed polynomial systems, that is systems with polynomials having the
same support, using the approach of Faug{\`e}re, Spaenlehauer, and Svartz
[ISSAC'14]. We present two algorithms for sparse Gr{\"o}bner bases computations
for mixed systems. The first one computes with mixed sparse systems and
exploits the supports of the polynomials. Under regularity assumptions, it
performs no reductions to zero. For mixed, square, and 0-dimensional
multihomogeneous polynomial systems, we present a dedicated, and potentially
more efficient, algorithm that exploits different algebraic properties that
performs no reduction to zero. We give an explicit bound for the maximal degree
appearing in the computations
Some projective surfaces of GK-dimension 4
We construct a family of connected graded domains of GK-dimension 4 that are
birational to P2, and show that the general member of this family is
noetherian. This disproves a conjecture of the first author and Stafford.
The algebras we construct are Koszul and have global dimension 4. They fail
to be Artin-Schelter Gorenstein, however, showing that a theorem of Zhang and
Stephenson for dimension 3 algebras does not extend to dimension 4. The
Auslander-Buchsbaum formula also fails to hold for our family.
The algebras can be obtained as global sections of a certain quasicoherent
graded sheaf on P1xP1, and our key technique is to work with this sheaf. In
contrast to all previously known examples of birationally commutative graded
domains, the graded pieces of the sheaf fail to be ample in the sense of Van
den Bergh. Our results thus require significantly new techniques.Comment: 48 pages, 1 figure, comments welcome; v2 introduction rewritten, no
other significant change
- …