781 research outputs found

    Modelling of artefacts in estimations of particle size of needle-like particles from laser diffraction measurements

    Get PDF
    Manufacturing of particulate products across many industries relies on accurate measurements of particle size distributions in dispersions or powders. Laser diffraction (or small angle light scattering) is commonly used, usually off-line, for particle size measurements. The estimation of particle sizes by this method requires the solution of an inverse problem using a suitable scattering model that takes into account size, shape and optical properties of the particles. However, laser diffraction instruments are usually accompanied by software that employs a default scattering model for spherical particles, which is then used to solve the inverse problem even though a significant number of particulate products occur in strongly non-spherical shapes such as needles. In this work, we demonstrate that using the spherical model for the estimation of sizes of needle-like particles can lead to the appearance of artefacts in the form of multimodal populations of particles with size modes much smaller than those actually present in the sample. This effect can result in a significant under-estimation of the mean particle size and in false modes in estimated particles size distributions.Comment: 28 pages 8 figures accepted in the journal of Chemical Engineering Scienc

    Dynamic response studies on aggregation and breakage dynamics of colloidal dispersions in stirred tanks

    Get PDF
    Aggregation and breakage of aggregates of fully destabilized polystyrene latex particles in turbulent flow was studied experimentally in both batch and continuous stirred tanks using small-angle static light scattering. It was found that the steady-state values of the root-mean-square radius of gyration are fully reversible upon changes of stirring speed as well as solid volume fraction. Steady-state values of the root-mean-square radius of gyration were decreasing with decreasing solid volume fraction as well as with increasing stirring speed. Moreover, it was found that the steady-state structure and shape of the aggregates is not influenced by the applied stirring speed

    Analysis of strategies for improving uranium utilization in pressurized water reactors

    Get PDF
    Systematic procedures have been devised and applied to evaluate core design and fuel management strategies for improving uranium utilization in Pressurized Water Reactors operated on a once-through fuel cycle. A principal objective has been the evaluation of suggested improvements on a self-consistent basis, allowing for concurrent changes in dependent variables such as core leakage and batch power histories, which might otherwise obscure the sometimes subtle effects of interest. Two levels of evaluation have been devised: a simple but accurate analytic model based on the observed linear variations in assembly reactivity as a function of burnup; and a numerical approach, embodied in a computer program, which relaxes this assumption and combines it with empirical prescriptions for assembly (or batch) power as a function of reactivity, and core leakage as a function of peripheral assembly power. State-of-the-art physics methods, such as PDQ-7, were used to verify and supplement these techniques.These methods have been applied to evaluate several suggested improvements: (1) axial blankets of low-enriched or depleted uranium, and of beryllium metal, (2) radial natural uranium blankets, (3) lowleakage radial fuel management, (4) high burnup fuels, (5) optimized H/U atom ratio, (6) annular fuel, and (7) mechanical spectral shift (i.e. variable fuel-to-moderator ratio) concepts such as those involving pin pulling and bundle reconstitution.The potential savings in uranium requirements compared to current practice were found to be as follows: (1) O0-3%, (2) negative, (3) 2-3%; possibly 5%, (4) "15%, (5) 0-2.5%, (6) no inherent advantage, (7) 10%. Total savings should not be assumed to be additive; and thermal/hydraulic or mechanical design restrictions may preclude full realization of some of the potential improvements

    Effects of secondary metal carbonate addition on the porous character of resorcinol-formaldehyde xerogels

    Get PDF
    A deeper understanding of the chemistry and physics of growth, aggregation and gelation processes involved in the formation of xerogels is key to providing greater control of the porous characteristics of such materials, increasing the range of applications for which they may be utilised. Time-resolved dynamic light scattering has been used to study the formation of resorcinol-formaldehyde gels in the presence of combinations of Group I (Na and Cs) and Group II (Ca and Ba) metal carbonates. It was found that the combined catalyst composition, including species and times of addition, is crucial in determining the end properties of the xerogels, via its effect on growth of clusters involved in formation of the gel network. Combination materials have textural characteristics within the full gamut offered by each catalyst alone; however, in addition, combination materials which retain the small pores associated with sodium carbonate catalysed xerogels exhibit a narrowing of the pore size distribution, providing an increased pore volume within an application-specific range of pore sizes. We also show evidence of pore size tunability while maintaining ionic strength, which significantly increases the potential of such systems for biological applications

    Analysis of strategies for improving uranium utilization in pressurized water reactors

    Get PDF
    Includes bibliographical references (pages 238-241)Systematic procedures have been devised and applied to evaluate core design and fuel management strategies for improving uranium utilization in Pressurized Water Reactors operated on a once-through fuel cycle. A principal objective has been the evaluation of suggested improvements on a self-consistent basis, allowing for concurrent changes in dependent variables such as core leakage and batch power histories, which might otherwise obscure the sometimes subtle effects of interest. Two levels of evaluation have been devised: a simple but accurate analytic model based on the observed linear variations in assembly reactivity as a function of burnup; and a numerical approach, embodied in a computer program, which relaxes this assumption and combines it with empirical prescriptions for assembly (or batch) power as a function of reactivity, and core leakage as a function of peripheral assembly power. State-of-the-art physics methods, such as PDQ-7, were used ! to verify and supplement these techniques.These methods have been applied to evaluate several suggested improvements: (1) axial blankets of low-enriched or depleted uranium, and of beryllium metal, (2) radial natural uranium blankets, (3) low-leakage radial fuel management, (4) high burnup fuels, (5) optimized H/U atom ratio, (6) annular fuel, and (7) mechanical spectral shift (i.e. variable fuel-to-moderator ratio) concepts such as those involving pin pulling and bundle reconstitution.The potential savings in uranium requirements compared to current practice were found to be as follows: (1) O0-3%, (2) negative, (3) 2-3%; possibly 5%, (4) "15%, (5) 0-2.5%, (6) no inherent advantage, (7) 10%. Total savings should not be assumed to be additive; and thermal/hydraulic or mechanical design restrictions may preclude full realization of some of the potential improvements

    An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System

    Get PDF
    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common' NTR-based moon/Mars STS, examines performance sensitivities resulting from different 'mission mode' assumptions, and quantifies potential schedule and cost benefits resulting from this modular moon/Mars NTR vehicle approach

    Measurement of adsorption of a single component from the liquid phase : modelling investigation and sensitivity analysis

    Get PDF
    In this work, we consider an alternative approach for the measurement of adsorption from the liquid phase. Consider a mixture consisting of a non-adsorbed component (B) and an adsorbed component (A) present at some low concentration. Initially, a feed of component B only flows through a column packed with an adsorbent. Then, the feed is switched to the mixture of A and B. As soon as the mixture enters the column, there will be a reduction in the outlet flow rate as component A leaves the liquid phase and passes into the adsorbed phase. There are three stages to this work. The first is to develop overall and component balances to show how the amount adsorbed of component A can be determined from the variation in the column outlet flow rate. The second is to determine the actual variation in the column outlet flow rate for both plug flow and axial-dispersed plug flow. The final stage is to consider the suitability of a gravity-fed system to deliver the feed to the column. An analysis of the results shows that the experimental arrangement should be able to accurately monitor adsorption from the liquid phase where the mass fraction of the solute is of the order of 1%: the limiting experimental factor is how constant the volumetric flow rate of the liquid feed can be maintained
    • …
    corecore