173 research outputs found

    Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies

    Get PDF
    Lentiviral vectors (LVs) are potent gene transfer vehicles frequently applied in research and recently also in clinical trials. Retargeting LV entry to cell types of interest is a key issue to improve gene transfer safety and efficacy. Recently, we have developed a targeting method for LVs by incorporating engineered measles virus (MV) glycoproteins, the hemagglutinin (H), responsible for receptor recognition, and the fusion protein into their envelope. The H protein displays a single-chain antibody (scFv) specific for the target receptor and is ablated for recognition of the MV receptors CD46 and SLAM by point mutations in its ectodomain. A potential hindrance to systemic administration in humans is pre-existing MV-specific immunity due to vaccination or natural infection. We compared transduction of targeting vectors and non-targeting vectors pseudotyped with MV glycoproteins unmodified in their ectodomains (MV-LV) in presence of α-MV antibody-positive human plasma. At plasma dilution 1:160 MV-LV was almost completely neutralized, whereas targeting vectors showed relative transduction efficiencies from 60% to 90%. Furthermore, at plasma dilution 1:80 an at least 4-times higher multiplicity of infection (MOI) of MV-LV had to be applied to obtain similar transduction efficiencies as with targeting vectors. Also when the vectors were normalized to their p24 values, targeting vectors showed partial protection against α-MV antibodies in human plasma. Furthermore, the monoclonal neutralizing antibody K71 with a putative epitope close to the receptor binding sites of H, did not neutralize the targeting vectors, but did neutralize MV-LV. The observed escape from neutralization may be due to the point mutations in the H ectodomain that might have destroyed antibody binding sites. Furthermore, scFv mediated cell entry via the target receptor may proceed in presence of α-MV antibodies interfering with entry via the natural MV receptors. These results are promising for in vivo applications of targeting vectors in humans

    Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN+-dendritic cells

    Get PDF
    Dendritic cells (DC) are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40) is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4) and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN)+ DC were analyzed by flow cytometry (FCM) and mixed lymphocyte reaction (MLR). Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC

    The Cytoplasmic Location of Chicken Mx Is Not the Determining Factor for Its Lack of Antiviral Activity

    Get PDF
    Chicken Mx belongs to the Mx family of interferon-induced dynamin-like GTPases, which in some species possess potent antiviral properties. Conflicting data exist for the antiviral capability of chicken Mx. Reports of anti-influenza activity of alleles encoding an Asn631 polymorphism have not been supported by subsequent studies. The normal cytoplasmic localisation of chicken Mx may influence its antiviral capacity. Here we report further studies to determine the antiviral potential of chicken Mx against Newcastle disease virus (NDV), an economically important cytoplasmic RNA virus of chickens, and Thogoto virus, an orthomyxovirus known to be exquisitely sensitive to the cytoplasmic MxA protein from humans. We also report the consequences of re-locating chicken Mx to the nucleus.Chicken Mx was tested in virus infection assays using NDV. Neither the Asn631 nor Ser631 Mx alleles (when transfected into 293T cells) showed inhibition of virus-directed gene expression when the cells were subsequently infected with NDV. Human MxA however did show significant inhibition of NDV-directed gene expression. Chicken Mx failed to inhibit a Thogoto virus (THOV) minireplicon system in which the cytoplasmic human MxA protein showed potent and specific inhibition. Relocalisation of chicken Mx to the nucleus was achieved by inserting the Simian Virus 40 large T antigen nuclear localisation sequence (SV40 NLS) at the N-terminus of chicken Mx. Nuclear re-localised chicken Mx did not inhibit influenza (A/PR/8/34) gene expression during virus infection in cell culture or influenza polymerase activity in A/PR/8/34 or A/Turkey/50-92/91 minireplicon systems.The chicken Mx protein (Asn631) lacks inhibitory effects against THOV and NDV, and is unable to suppress influenza replication when artificially re-localised to the cell nucleus. Thus, the natural cytoplasmic localisation of the chicken Mx protein does not account for its lack of antiviral activity

    A Prominent Role for DC-SIGN+ Dendritic Cells in Initiation and Dissemination of Measles Virus Infection in Non-Human Primates

    Get PDF
    Measles virus (MV) is a highly contagious virus that is transmitted by aerosols. During systemic infection, CD150+T and B lymphocytes in blood and lymphoid tissues are the main cells infected by pathogenic MV. However, it is unclear which cell types are the primary targets for MV in the lungs and how the virus reaches the lymphoid tissues. In vitro studies have shown that dendritic cell (DC) C-type lectin DC-SIGN captures MV, leading to infection of DCs as well as transmission to lymphocytes. However, evidence of DC-SIGN-mediated transmission in vivo has not been established. Here we identified DC-SIGNhiDCs as first target cells in vivo and demonstrate that macaque DC-SIGN functions as an attachment receptor for MV. Notably, DC-SIGNhicells from macaque broncho-alveolar lavage and lymph nodes transmit MV to B lymphocytes, providing in vivo support for an important role for DCs in both initiation and dissemination of MV infection

    Subacute Sclerosing Panencephalitis: Results of the Canadian Paediatric Surveillance Program and review of the literature

    Get PDF
    BACKGROUND: Subacute Sclerosing Panencephalitis (SSPE) is so rare in developed countries with measles immunization programs that national active surveillance is now needed to capture sufficient number of cases for meaningful analysis of data. Through the Canadian Paediatric Surveillance Program (CPSP), the SSPE study was able to document a national incidence and determine the epidemiology of affected Canadian children. METHODS: Between 1997 and 2000, the CPSP surveyed monthly 1978 to 2294 Canadian pediatricians and sub-specialists for SSPE cases. The response rate varied from 82–86% over those years. RESULTS: Altogether, four SSPE cases were reported to the CPSP: one case before, two during and one after the study period. The incidence of SSPE in Canadian children was 0.06/million children/year. Of the four cases, diagnosed between ages four and 17 years, three children had measles infection in infancy. All children showed a progressive course of dementia, loss of motor skills and epilepsy. Two children were treated with isoprinosine and intraventricular interferon but died in less than three years from disease onset. One child did not have any treatment and died after seven years of illness. One child received intraventricular ribavirin and remains alive, but markedly impaired, nine years following diagnosis. CONCLUSION: The CPSP has demonstrated that Canadian paediatricians and paediatric neurologists may encounter cases of SSPE. This report highlights the clinical course of affected Canadian children and provides a review of the disease and its management

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus

    Get PDF
    Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections

    Biological and biomedical implications of the co-evolution of pathogens and their hosts

    Get PDF
    Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host–pathogen interactions
    corecore