1,395 research outputs found

    Phase space interference and the WKB approximation for squeezed number states

    Full text link
    Squeezed number states for a single mode Hamiltonian are investigated from two complementary points of view. Firstly the more relevant features of their photon distribution are discussed using the WKB wave functions. In particular the oscillations of the distribution and the parity behavior are derived and compared with the exact results. The accuracy is verified and it is shown that for high photon number it fails to reproduce the true distribution. This is contrasted with the fact that for moderate squeezing the WKB approximation gives the analytical justification to the interpretation of the oscillations as the result of the interference of areas with definite phases in phase space. It is shown with a computation at high squeezing using a modified prescription for the phase space representation which is based on Wigner-Cohen distributions that the failure of the WKB approximation does not invalidate the area overlap picture.Comment: 9 pages, 4 figure

    On the Squeezed Number States and their Phase Space Representations

    Get PDF
    We compute the photon number distribution, the Q distribution function and the wave functions in the momentum and position representation for a single mode squeezed number state using generating functions which allow to obtain any matrix element in the squeezed number state representation from the matrix elements in the squeezed coherent state representation. For highly squeezed number states we discuss the previously unnoted oscillations which appear in the Q function. We also note that these oscillations can be related to the photon-number distribution oscillations and to the momentum representation of the wave function.Comment: 16 pages, 9 figure

    Dimensional enhancement of kinetic energies

    Get PDF
    Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number, N, of particles. We present a quantum state of N non-interacting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centrifugal potential whose strength is quadratic in the number of dimensions of configuration space.Comment: 9 pages, accepted by Phys. Rev.

    The Generalized Hartle-Hawking Initial State: Quantum Field Theory on Einstein Conifolds

    Get PDF
    Recent arguments have indicated that the sum over histories formulation of quantum amplitudes for gravity should include sums over conifolds, a set of histories with more general topology than that of manifolds. This paper addresses the consequences of conifold histories in gravitational functional integrals that also include scalar fields. This study will be carried out explicitly for the generalized Hartle-Hawking initial state, that is the Hartle-Hawking initial state generalized to a sum over conifolds. In the perturbative limit of the semiclassical approximation to the generalized Hartle-Hawking state, one finds that quantum field theory on Einstein conifolds is recovered. In particular, the quantum field theory of a scalar field on de Sitter spacetime with RP3RP^3 spatial topology is derived from the generalized Hartle-Hawking initial state in this approximation. This derivation is carried out for a scalar field of arbitrary mass and scalar curvature coupling. Additionally, the generalized Hartle-Hawking boundary condition produces a state that is not identical to but corresponds to the Bunch-Davies vacuum on RP3RP^3 de Sitter spacetime. This result cannot be obtained from the original Hartle-Hawking state formulated as a sum over manifolds as there is no Einstein manifold with round RP3RP^3 boundary.Comment: Revtex 3, 31 pages, 4 epsf figure

    Entangled coherent states versus entangled photon pairs for practical quantum information processing

    Full text link
    We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.Comment: 9 pages, 6 figures, substantially revised version, to be published in Phys. Rev.

    Husimi's Q(α)Q(\alpha) function and quantum interference in phase space

    Full text link
    We discuss a phase space description of the photon number distribution of non classical states which is based on Husimi's Q(α)Q(\alpha) function and does not rely in the WKB approximation. We illustrate this approach using the examples of displaced number states and two photon coherent states and show it to provide an efficient method for computing and interpreting the photon number distribution . This result is interesting in particular for the two photon coherent states which, for high squeezing, have the probabilities of even and odd photon numbers oscillating independently.Comment: 15 pages, 12 figures, typos correcte

    Dynamical Origin of the Lorentzian Signature of Spacetime

    Get PDF
    It is suggested that not only the curvature, but also the signature of spacetime is subject to quantum fluctuations. A generalized D-dimensional spacetime metric of the form gμν=eμaηabeνbg_{\mu \nu}=e^a_\mu \eta_{ab} e^b_\nu is introduced, where ηab=diag{eiθ,1,...,1}\eta_{ab} = diag\{e^{i\theta},1,...,1\}. The corresponding functional integral for quantized fields then interpolates from a Euclidean path integral in Euclidean space, at θ=0\theta=0, to a Feynman path integral in Minkowski space, at θ=π\theta=\pi. Treating the phase eiθe^{i\theta} as just another quantized field, the signature of spacetime is determined dynamically by its expectation value. The complex-valued effective potential V(θ)V(\theta) for the phase field, induced by massless fields at one-loop, is considered. It is argued that Re[V(θ)]Re[V(\theta)] is minimized and Im[V(θ)]Im[V(\theta)] is stationary, uniquely in D=4 dimensions, at θ=π\theta=\pi, which suggests a dynamical origin for the Lorentzian signature of spacetime.Comment: 6 pages, LaTe

    Interference in a Spherical Phase-Space and Asymptotic-Behavior of the Rotation Matrices

    Get PDF
    We extend the interference in the phase-space algorithm of Wheeler and Schleich [W. P. Schleich and J. A. Wheeler, Nature 326, 574 (1987)] to the case of a compact, spherical topology in order to discuss the large j limits of the angular momentum marginal probability distributions. These distributions are given in terms of the standard rotation matrices. It is shown that the asymptotic distributions are given very simply by areas of overlap in the classical spherical phase-space parametrized by the components of angular momentum. The results indicate the very general validity of the interference in phase-space concept for computing semiclassical limits in quantum mechanics
    • …
    corecore