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Interference in a spherical phase space and asymptotic behavior
of the rotation matrices
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We extend the interference in the phase-space algorithm of Wheeler and Schleich [W.P. Schleich
and J.A. Wheeler, Nature 326, 574 (1987)] to the case of a compact, spherical topology in order
to discuss the large j limits of the angular momentum marginal probability distributions. These
distributions are given in terms of the standard rotation matrices. It is shown that the asymp-
totic distributions are given very simply by areas of overlap in the classical spherical phase-space
parametrized by the components of angular momentum. The results indicate the very general
validity of the interference in phase-space concept for computing semiclassical limits in quantum
mechanics.

PACS number(s): 03.65.Sq, 03.65.Ca, 42.50.—p

I. INTRODUCTION

Wheeler, Schleich, and co-workers [1—3] have given an
elegant method to find the semiclassical limits of the over-

lap integral of quantum states in L . The method is
geometrical and is based on areas of overlap of suitably
defined classical distribution functions, in a flat classi-
cal phase space. In a fully classical theory if the area
of overlap is made up of disjoint pieces one would sim-

ply sum the areas; however, in the semiclassical theory
of Schleich and Wheeler, if the areas of overlap are not
connected they must be added with an appropriate phase
factor to obtain the correct result. Thus interference fea-
tures can arise as an interference in phase space. The
technique has been applied, for example, to oscillations
in the transition amplitudes for Franck-Condon transi-
tions [3], oscillations in the photon-number distributions
for squeezed states [2,4], and interference fringes exhib-
ited by superposition states [5]. Our primary objective
in this paper is to show that the technique of interference
may be extended to a spherical phase space. As this is
the appropriate phase space to describe angular momen-
tum, we can thus obtain the semiclassical limits of the
marginal distributions for the components of angular mo-
mentum. For example, the probability distribution for J
measurements on a system prepared in a J eigenstate in
the limit of large j is given easily by simple geometry on
the sphere. Furthermore, as this marginal distribution
is in fact given in terms of the standard rotation matri-
ces the method gives a simple algorithm for computing
the asymptotic form of the rotation matrices. In the re-
mainder of this introduction we present the method of
Wheeler and Schleich in a form suitable to a discussion
of the angular momentum phase space.

Consider a harmonic oscillator with unit mass and fre-

quency, oscillating around the equilibrium position q = 0,
and prepared in an energy eigenstate u (x) with energy
E = h(n + 2). Suppose this system is subjected to a
sudden classical force, which causes the potential to be
displaced to a new equilibrium position q = d but other-

wise remains unchanged in shape. What is the probabil-
ity that the system will make a transition from the state
u (x) to a new energy eigenstate g (T) of the displaced
oscillator? This is of course given by the modulus square
of the transition amplitude

dqv/r (q) *u„(q).

Wheeler and Schleich give an elegant method for deter-
mining the size of this amplitude, in the semiclassical
limit, based on interference in phase space. Before pre-
senting this method we will give an alternative interpre-
tation of the transition amplitude, which is more appro-
priate for our treatment of rotation matrices in Sec. II.

Consider an oscillator prepared in the state u„(q). Let
H' be a Hermitian operator representing a physical quan-
tity with eigenstate g (q). Clearly H' is the operator

~'+ (q —d)'
2+ 2

(2)

with eigenvalues h = h(m + 2) and the eigenstates are

related to the energy eigenstates by ~g ) = D(d) ~m),
where D(d) is the unitary displacement operator [6]. It
is easy to see that the probability of obtaining the result
h for a measurement of H' for a system in the state ~n)

is given by the modulus square of the overlap in Eq. (1),

(3)

This interpretation shows quite clearly that the interfer-
ence fringes in m are completely analogous to the inter-
ference in the probability distributions for other quanti-
ties; e.g. , the position density for the two-slit experiment.

To make this point more directly let us represent the
states

~ g ) and ~n) by classical distributions in phase
space. Each state is represented. by an annulus of width
unity centered on a Kramers trajectory defined through
the semiclassical quantization condition for the action

1050-2947/93/48(3)/1854(7)/$06. 00 48 1854 1993 The American Physical Society



INTERFERENCE IN A SPHERICAL PHASE SPACE AND. . . 1855

J = dye q

= 2~5(m+ -', ).

unit frequency, is shown to be

~.= &' 6 -(q-)p-(q. ) Ip' (q-) —p.'(q-) I) (12)

Thus the Kramers trajectory is de6ned by

2(p + q ) = h(m+ 2). (6)

2nh & p'+ q' & 2(n+ 1)h
0 otherwise,

P(mfp, q) = g

'
1, p2+ (q —d)2 & 2mb

& p2 + (q —d)2 + 1
0 otherwise.

Then it is clear that

P(mfn) = dp dq P(m fp, q)P(p, q fn)

1
x (area of overlap)

2vrh

2~5

where the area of overlap is represented by the shaded
regions in Fig. 1 and the area of each diamond shaped
shaded region is A . In Dowling et al. [3] this area, for

The annulus representing fn) is centered on the ori-
gin, while the annulus representing f@ ) is centered on

q = d, p = 0 (Fig. 1). These annuli are referred to as
Planck-Bohr-Sommerfeld (PBS) bands. The area of a
PBS band is 2vrh. We now regard the PBS bands as
classical phase-space densities. Let P(p, q fn) be the con-
ditional probability density for the point (p, q), given that
the system is in the PBS band labeled n, while P(m fp, q)
is the conditional probability of obtaining the result 6
for a measurement of the classical physical quantity cor-
responding to H', given the result (p, q) These distribu-
tions are chosen as

where q is the position at which the two Kramers tra-
jectories intersect, p (q, ) is the value of the momentum
at the intersection, while p' (q, ) is the slope of the tra-
jectory at the point of intersection. In Fig. 2 we plot
P(m fn) calculated Rom the area of overlap for n = 4
versus m for difFerent displacement parameters d.

Of course one can directly compute P(mfn) directly
from the quantum-mechanical formalism:

P(mfn) = f(g fn) f'.

This is shown in Fig. 3. Clearly, interference fringes
distinguish the quantum result from the classical result
in Fig. 2. We now demonstrate how these interference
fringes may be derived by assigning amplitudes to areas
of overlap in phase space.

We can obtain an asymptotic expression for the tran-
sition amplitude in Eq. (1) by using semiclassical wave
functions in the integrand. These functions may be con-
structed by standard WKB techniques for bound systems
or more generally by the Maslov construction, which as-
sociates a wave function to an arbitrary curve in phase
space [7]. To each PBS band we associate a wave function
u„"(q) given by

u" (q) = 2 [T p (q)] / cos[S (q) —a/4], (14)

where T is the period of the associated orbit, p (q) de-
fines the corresponding Kramers trajectory Eq. (6), and
S (q) is the action function along the orbit. The phase
shift vr/4 is a topological phase determined by the num-
ber of turning points in the position variable.

The probability may then be written

( i 1/2 ( )1/2
P(mfn) =

f

"
'f

e-*4—+
f( 2mb) ( 2vrh )

(15)
where ~ is, as before, the area of the diamond shaped
regions of overlap of the PBS bands. The phase P is

0.3

I q

0.25

P (mjn)

0.15

D. 1

0.05

10 15 20 25

FIG. 1. Phase-space representations of harmonic oscillator
states as Planck-Bohr-Sommerfeld bands.

FIG. 2. Classical probability distribution P(mfn) for n = 4
with various displacements (units such that 5 = 1).
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0.25 and the Hamiltonian is

0.2 p'a="—'+
2 sin 0

(2o)

0.15
P (ml n)

0.1

0.05

10 15 20 25

Clearly, p@ is a constant of the motion. There are thus
two constants of the motion (including the energy), and
the four-dimensional phase-space must reduce to two di-
mensions.

A more standard choice of canonical variables, how-
ever, is given by the components of angular momentum
(which may be considered as a canonical transformation
of the original variables) defined by

FIG. 3. Quantum-mechanical probability distribution
P(m, ~n) with n = 4 and d = 2.5 (units such that 5 = 1).
The dashed line is the classical result, as in I ig. 2

the area in common between the areas bounded by the
Kramers trajectories (Fig. 1). The essential difference
between the semiclassical and the classical result is the
usual one: to determine a probability we first determine
the total amplitude of the overlap, then take the modulus
square, whereas in the classical result we simply sum the
areas of overlap. The method thus assigns to each area
of overlap an amplitude and a phase. To see this even
more clearly, we write the semiclassical result as

J = —pg sin P —pe cot 8 cos P,
J„=ps cos P —py cot 0 sing,
J, =pp.

The total angular momentum is then

I&l' = pe+, 20

making the Hamiltonian

II = -'i Ji .

(21)
(22)

(»)

(24)

(25)

P(m~n) = 2 [1 + cos(2$ „)]. (16)

The classical result is obtained when we neglect the in-
terference term.

The inteference in the phase-space method presented
above is justifed by associating a semiclassical (WKB)
wave function to phase-space representations of the state
in terms of PBS bands. However, one strongly suspects
that the method is of suKciently general validity to en-
able asymptotic expressions for overlap integrals to be
worked out purely from the geometry of overlapping PBS
bands, without knowing the underlying WKB wave func-
tions. We will answer this question in the afhrmative by
considering the case of a spherical (S2) phase space. The
method then enables asymptotic results for the rotation
matrices to be obtained by simple geometry on the sur-
face of a sphere.

II. ANGULAR MOMENTUM PHASE SPACE

We first must decide on the appropriate phase space
for angular momentum states. To be specific, consider a
particle of unit mass constrained to move on the surface
of a sphere of unit radius. The position of the particle
is most easily described in terms of the spherical polar
angles (0, P). The Lagrangian for the system is then

L = — sin 0 + 0

The canonical momenta are

[J,Jy] = ihJ„
[Jy, J,] = ihJ,
[J„J] = ihJ„.

(26)

(27)

(2S)

The simultaneous eigenstates of J„J are

J'~j, m) = h'q(j +1)~j,m),

J,[j,m) = hm(j, m),

(29)

(3o)

where as usual j = 0, 1, 2, . . . and m = —j, . . . , j. Eigen-
states for the other components can be obtained by ro-
tation of the z eigenstates.

Any rotation in three dimensions can be expressed in
terms of the standard rotation operator

in
D(n, P, p) = exp

~

——J,
i

ip ) f ipx exp
/

——J„
i

exp
/

——J,
/

.")

The classical phase space is then the sphere with Carte-
sian coordinates (J,J„,J, ) and radius J =

i
J

~

. The
trajectory corresponding to say the J eigenstate is then
simply a circle defined by J =const; likewise for other
components.

In quantum mechanics, however, angular momentum
is represented by the operators (J,J„,J,), which obey
the commutation relations

pg ——0,

p4, = /sin 0,

The matrix elements of this operator are

D', (n, P, p) = (j, m'~D(n, P, p)]j, m). (32)
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A rotation purely around the y axis has the matrix ele-
ments defined by

/Iz

d', (p) =D', (o, p, o). (33)

Suppose now the system is prepared in an eigenstate
of J„which we denote

~ j, m), . Let J be the component
in the direction n. What is the probability that a mea-
surement of J~ will give the result nh? This is of course
given by

p(n[m) = ]„(j,nfj, m), ]',

where
~ j, n) is an eigenstate of J . For the sake of sim-

plicity we will assume that n lies in the x-z plane; thus

~j, m)„= exp (
—eJeP) ~j, m), , (35)

and the overlap is given directly in terms of the rotation
matrix by

„(j,n~ j,m), = d~ (P), (36)
FIG. 4. Phase-space representation of eigenstates of J and

J„.The area of overlap is designated A~

where P is the angle between n and the z axis.
We now turn to a phase-space representation of the

angular momentum states. To do this we define the PBS
bands in the following way. A z eigenstate

~j, m), is rep-
resented by a Kramers trajectory with J = m on the

1
surface of a sphere of radius R = [j(j+ 1)]'. The PBS
band is then centered on this trajectory and lies between
Jz ——m —

2 and J, = m+ 2. The same idea is applied to
eigenstates of J . In Fig. 4 we illustrate two PBS bands
corrsponding to J and J eigenstates. Clearly evident
are two areas of overlap, and thus we expect to see inter-
ference &inges in the probability distribution in Eq. (34).
We now discuss this case in some detail.

The overlap between the J and J band is made up
of the two small areas A~ shown as shaded in Fig. 4.

I

We can now directly apply the area of the overlap algo-
rithm to compute the amplitude, (j, m~ j, n) and corre-
sponding rotation matrix element d~ (n/2). However,
it is not at all clear how the area of overlap determines
the amplitude and phase in the case of a spherical phase
space. The area of overlap is simple enough. As the area
of each of the PBS bands is of width unity, the area of
overlap is 1. However, as we show below, this area must
be weighted by the inverse of the radius B. The next
problem is to determine which of four possible areas (see
Fig. 4) contained between the Kramers trajectories will
determine the phase.

Define a~ (z, x) as the area bounded by the circles J
x, J = z. This is given by

for x, z & 0.

(R
a~(z, x) = 2R arctan

~

—QRz —xz —zz
~

—2Rz arctan
(xz x

R& —xz —zz)—2Rx arcsin
Rz —xz (37)

a~( —z, x) = 2vrR(R —z) —a'(z, x),
a~ (z, —x) = 2n R(R —x) —a~ (z, x).

(38)
(39)

There are four possible areas to consider in Fig. 4:

The areas for x or z less than 0 are obtained by the
relations

2 1/2
6f ~ 1 e10 i (j+-',)) (4l.)

To distinguish which area should contribute to the phase,
we consider the case m = 0, n = 1.

The asymptotic result for the rotation matrix for this
case is

Ai ——a'(m, n),
Az = 27rR(R —m) —a~(m, n),
As ——27r R(R —n) —a' (m, n),
A4 = 2vrR(m + n) + a~(m, n).

(4Oa)

(4ob)
(40c)
(4od)

, ( l /A&, 't

2 ) (27rR)
(42)

Given that the area of overlap for 410 is unity, it is pos-
sible to write
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where the radius of the sphere B for large j is given by
R = gj + 1/2. This factor is the same form as that for
the Bat phase space, except that the area of overlap is
weighted by (27rR) . With this in mind we conjecture
that the area of overlap formula for the amplitude should
be

(o)0.04

0.03

P (m)
0.02

'~

0.01

where 0 is a phase factor yet to be determined.
Using Eq. (43), the phase contributions from each of

the areas in Eq. (40) for j large are

f~'(m, n)
cos —— = cos 44a

~2R 4) ~
2R 4)

cos —— = (—1)~ cos (44c)
i2R 4) ( 2R 4)'

P (m)

(b)0.04

0.03

0.02

0.01

10 20 30 40 50

With n = 1, m = 0, Eq. (44) together with Eq. (41) imply
that either A2 or A4 is the correct choice. Now

10 20 30 40 50

d'. (&) = (—1)" d'. (&) (45)

So do&(m/2) has a phase of (—1)(~ )~ . Thus the correct
area is A2. Thus we postulate that the area of the overlap
rule for spherical phase space is

FIG. 5. Probability distributions for J eigenvalues, m, for
two difFerent J eigenstates (a) ~j = 50, m = 30) and (b)
~j = 50, m = 40) . The solid line is the distribution ob-
tained from a numerical evaluation of the exact result using
recursion relations, and the dashed line is the result using the
interference in the phase-space method.

d',
I

— = (—I)I d', (
—), (47)

"i2) 2vrR q 2R 4)

The case for which the area-of-overlap result is easiest
to verify is d o(2). Using the relation [8]

~d so( —)~2 and ~d 4o(2)~, respectively. The results
obtained by the interference in the phase space method
(supplemented with an Airy function as described be-
low), are compared with a direct numerical computation
of the rotation matrices using appropriate recursion rela-
tions [9]. The agreement is quite good. Towards the tails

it is clear that if j is even d o( —) = 0 for m odd and if j
is odd, then d~ o(2) = 0 for m, even. Using interference
in phase space we have

0.06

0.05

4~

I

I

I
I
I

I

],(j,m[j, O). ]' = d',
)

, & '(m, o)

~2~R) i, 2R 4)
where in this case n~(m, o) = 7rR(R —m). Using the
asymptotic expression for the radius, B = j+ 2, the phase
in the cosine is P = (j —m) 2. So

P (m)
0.04

0.03

0.02

0.01

10 20 30 50

0 for (j —m) odd
cos

1 for (j —m) even, (49)

which is consistent with the exact result.
In Fig. 5 we plot the probability distributions

FIG. 6. Probability distribution for J eigenvalues for a
system prepared in a superposition of J eigenstates. The
solid line is the exact distribution calculated numerically by
recursion relations, while the dashed line represents the result
of the interference in the phase-space method.
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of the distributions the corresponding PBS bands have
only one area of overlap and approach the no-overlap re-
gion, so one would expect the approximation to break
down here. The problem is to find the correct semiclassi-
cal wave functions near the classical turning points. This
is an old problem. The solution in this region is given
in terms of Airy functions. In the Appendix we show
how this can be used to supplement the area-of-overlap
method to give a better approximation near the tails of
the distribution.

Another interesting case occurs for the probability dis-

tribution for J, measurements when the system is pre-
pared in a superposition of two distinct J eigenstates.
Suppose, for example, we choose

i@).= (i50, 30). + i50, 40).).
2

(5o)

In this case there are four regions of overlap as the state
~g) is represented by two PBS bands. The area-of-
overlap method then gives the probability distribution
by

g50
50, m[@).~' = 2

1

(a' (m, 30) vrl &'
4pcos ' ——

i
+ 2

2vrR 4 ) 2~R
f a (m, 40) 7r)—

4)i (51)

In Fig. 6 we compare this result (again supplemented
with an Airy function for the tails) with that computed
by recursion relations for the rotation matrices. Again
the agreement is very good.

III. CONCLUSION

We have shown how the area-of-overlap method of
Schleich and Wheeler [4] may be adapted for calculat-
ing the overlap of states of definite angular momentum.
Whereas for one-dimensional potentials with a Hat phase
space, inteference in phase space is not very different from
other approximation methods and so is mostly useful as
a conceptual guide, its application to angular momentum
is in many ways easier than the alternative asymptotic
techniques. It is easier for example to calculate areas on
a sphere than to take the limit of Legendre functions.

The method enables one to calculate asymptotic ex-
pressions for the rotation matrices by calculating simple
areas on the surface of a sphere. In addition the geometry
of overlapping areas on the surface of the sphere enables
one to determine at a glance the gross features of the
relevant rotation matrix in terms of interference fringes.
Thus the method not only provides a simple way to com-
pute rotation matrices in the semiclassical limit but also
gives valuable physical insight into the essential differ-
ences between the classical and quantum descriptions of
angular momentum.

( n
q(z) = R arccos

~ 1 —z2 j (A1)

where M = m/R, 1V = n/R, and K = k/R. Typically
a WKB wave function for a periodic system has a phase
factor of the form cos J' ' p(x)dx ——,where p(x) is
the momentum as a function of position along a curve
of constant energy, and x0 is the classical turning point
p(xp) = 0. This satisfies the second-order diB'erential
equation

, +p (x)u=0.tL 2 (A2)

Near the turning point x0 this becomes

G + a(x —xp)u(x) = 0, (A3)

which has the solution

u(x) = Ai(a'~ (x —xp)), (A4)

where Ai is the Airy function, and a is a constant that de-
pends on the turning point and the form of the potential.
This is the approximate solution in the neighborhood of
the turning point. We thus expect that near the turn-
ing points q(z) in Eq. (Al) should be an approximate
solution to the differential equation

APPENDIX + q (M) y = 0. (A5)

In this appendix we show how to supplement the area
of overlap algorithm in order to get good agreement at
the tails of the distributions; that is, in the region where
there is only one area of overlap. The idea used in Ref.
[10] is to approximate the WEB wave function near a
turning point with an Airy function solution. Consider
the overlap of the states

~ j, rn), and
~j, n) . The phase

factor from the interference in phase space method is of
the form cos M q z dz —4, where

q (M) = a(K —M).

Where a = —dq (z)/dz~Jr let

u(z) =
1 —z2

Then

A Taylor expansion of q to first order gives

(A6)

(A7)
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a = 2r u'(K).

The di8'erential equation thus becomes

+ 2R u'(K)(K —M)y = 0.

(As)

(A9)

Thus the approximate solution near the turning points is

. (( 2a2mK
y(M) = const x Ai

[ ~
(M —K)K2 s/2 )

(A10)
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