345 research outputs found
Die Europäisierung der öffentlichen Aufgaben
Die zunehmende Europäisierung der öffentlichen Aufgaben ist einer der wichtigsten Trends im Wandel der Staatstätigkeit in der Bundesrepublik Deutschland und in anderen Mitgliedstaaten der Europäischen Union. In diesem Essay werden die Stufen der Europäisierung der Staatstätigkeit nachgezeichnet, in Weiterführung von Lindberg/Scheingold (1970) und Schmitter (1996) quantifiziert und hinsichtlich ihrer Kosten und ihres Nutzen erörtert.
Inhalt:
Stufen der Europäisierung der öffentlichen Aufgaben Der Europäisierungsgrad der öffentlichen Aufgaben von 1950 bis zum Ende des 20. Jahrhunderts Vom Nutzen und von den Kosten der Europäisierung der öffentlichen Angelegenheiten Verzeichnis der zitierten Literatu
A fast, very-high-energy γ -ray flare from BL Lacertae during a period of multi-wavelength activity in June 2015
The mechanisms producing fast variability of the γ-ray emission in active galactic nuclei (AGNs) are under debate. The MAGIC telescopes detected a fast, very-high-energy (VHE, E > 100 GeV) γ-ray flare from BL Lacertae on 2015 June 15. The flare had a maximum flux of (1.5 ± 0.3) × 10-10 photons cm-2 s-1 and halving time of 26 ± 8 min. The MAGIC observations were triggered by a high state in the optical and high-energy (HE, E > 100 MeV) γ-ray bands. In this paper we present the MAGIC VHE γ-ray data together with multi-wavelength data from radio, optical, X-rays, and HE γ rays from 2015 May 1 to July 31. Well-sampled multi-wavelength data allow us to study the variability in detail and compare it to the other epochs when fast, VHE γ-ray flares have been detected from this source. Interestingly, we find that the behaviour in radio, optical, X-rays, and HE γ-rays is very similar to two other observed VHE γ-ray flares. In particular, also during this flare there was an indication of rotation of the optical polarization angle and of activity at the 43 GHz core. These repeating patterns indicate a connection between the three events. We also test modelling of the spectral energy distribution based on constraints from the light curves and VLBA observations, with two different geometrical setups of two-zone inverse Compton models. In addition we model the γ-ray data with the star-jet interaction model. We find that all of the tested emission models are compatible with the fast VHE γ-ray flare, but all have some tension with the multi-wavelength observations
Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017
PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. To date, very high-energy (VHE, > 100 GeV) emission has been observed from this source either during long high states of optical and GeV activity or during short flares. Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We characterize and model the source in a broadband context, which would provide a baseline over which high states and flares could be better understood. Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray, and gamma-ray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modeled within an external Compton scenario with a stationary emission region through which plasma and magnetic fields are flowing. We also perform the emission-model-independent calculations of the maximum absorption in the broad line region (BLR) using two different models. Results. The MAGIC telescopes collected 75 hr of data during times when the Fermi-LAT flux measured above 1 GeV was below 3? × 10 -8 ? cm -2 ? s -1 , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.5¿) VHE gamma-ray emission at the level of (4.27 ± 0.61 stat ) × 10 -12 ? cm -2 ? s -1 above 150 GeV, a factor of 80 lower than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broadband emission is compatible with the external Compton scenario assuming a large emission region located beyond the BLR. For the first time the gamma-ray data allow us to place a limit on the location of the emission region during a low gamma-ray state of a FSRQ. For the used model of the BLR, the 95% confidence level on the location of the emission region allows us to place it at a distance > 74% of the outer radius of the BLR. © ESO 2018.The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Exce-lencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382, and by the Brazilian MCTIC, CNPq and FAPERJ. IA acknowledges support from a Ramón y Cajal grant of the Ministerio de Economía, Industria, y Competitividad (MINECO) of Spain. Acquisition and reduction of the POLAMI and MAPCAT data was supported in part by MINECO through grants AYA2010-14844, AYA2013-40825-P, and AYA2016-80889-P, and by the Regional Government of Andalucía through grant P09-FQM-4784.Peer Reviewe
Measurement of the Extragalactic Background Light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1
We present a measurement of the extragalactic background light (EBL) based on
a joint likelihood analysis of 32 gamma-ray spectra for 12 blazars in the
redshift range z = 0.03 to 0.944, obtained by the MAGIC telescopes and
Fermi-LAT. The EBL is the part of the diffuse extragalactic radiation spanning
the ultraviolet, visible and infrared bands. Major contributors to the EBL are
the light emitted by stars through the history of the universe, and the
fraction of it which was absorbed by dust in galaxies and re-emitted at longer
wavelengths. The EBL can be studied indirectly through its effect on very-high
energy photons that are emitted by cosmic sources and absorbed via
photon-photon interactions during their propagation across cosmological
distances. We obtain estimates of the EBL density in good agreement with
state-of-the-art models of the EBL production and evolution. The 1-sigma upper
bounds, including systematic uncertainties, are between 13% and 23% above the
nominal EBL density in the models. No anomaly in the expected transparency of
the universe to gamma rays is observed in any range of optical depth.We also
perform a wavelength-resolved EBL determination, which results in a hint of an
excess of EBL in the 0.18 - 0.62 m range relative to the studied models,
yet compatible with them within systematics.Comment: Accepted by MNRA
Performance and first measurements of the MAGIC stellar intensity interferometer
In recent years, a new generation of optical intensity interferometers has emerged, leveraging the existing infrastructure of Imaging Atmospheric Cherenkov Telescopes (IACTs). The MAGIC telescopes host the MAGIC-SII system (Stellar Intensity Interferometer), implemented to investigate the feasibility and potential of this technique on IACTs. After the first successful measurements in 2019, the system was upgraded and now features a real-time, dead-time-free, 4-channel, GPU-based correlator. These hardware modifications allow seamless transitions between MAGIC’s standard very-high-energy gamma-ray observations and optical interferometry measurements within seconds. We establish the feasibility and potential of employing IACTs as competitive optical Intensity Interferometers with minimal hardware adjustments. The measurement of a total of 22 stellar diameters are reported, 9 corresponding to reference stars with previous comparable measurements, and 13 with no prior measurements. A prospective implementation involving telescopes from the forthcoming Cherenkov Telescope Array Observatory’s Northern hemisphere array, such as the first prototype of its Large-Sized Telescopes, LST-1, is technically viable. This integration would significantly enhance the sensitivity of the current system and broaden the UV-plane coverage. This advancement would enable the system to achieve competitive sensitivity with the current generation of long-baseline optical interferometers over blue wavelengths
Constraints on axion-like particles with the Perseus Galaxy Cluster with MAGIC
Axion-like particles (ALPs) are pseudo-Nambu-Goldstone bosons that emerge in
various theories beyond the standard model. These particles can interact with
high-energy photons in external magnetic fields, influencing the observed
gamma-ray spectrum. This study analyzes 41.3 hrs of observational data from the
Perseus Galaxy Cluster collected with the MAGIC telescopes. We focused on the
spectra the radio galaxy in the center of the cluster: NGC 1275. By modeling
the magnetic field surrounding this target, we searched for spectral
indications of ALP presence. Despite finding no statistical evidence of ALP
signatures, we were able to exclude ALP models in the sub-micro electronvolt
range. Our analysis improved upon previous work by calculating the full
likelihood and statistical coverage for all considered models across the
parameter space. Consequently, we achieved the most stringent limits to date
for ALP masses around 50 neV, with cross sections down to GeV.Comment: 25 pages, 10 figures, accepted for publication in Physics of the Dark
Univers
Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period
We report on observations of the pulsar / Be star binary system PSR J2032+4127 / MT91 213 in the energy range between 100 GeV and 20 TeV with the VERITAS and MAGIC imaging atmospheric Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new, point-like, gamma-ray source is detected, coincident with the location of PSR J2032+4127 / MT91 213. The gamma-ray light curve and spectrum are well-characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar / Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope (XRT) on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130
Follow-up observations of GW170817 with the MAGIC telescopes
The discovery of the electromagnetic counterpart AT2017gfo and the GRB 170817A, associated to the binary neutron star merger GW170817, was one of the major advances in the study of gamma-ray bursts (GRBs) and the hallmark of the multi-messenger astronomy with gravitational waves. Another breakthrough in GRB physics is represented by the discovery of the highly energetic, teraelectronvolt (TeV) component in the GRB 190114C, possibly an universal component in all GRBs. This conclusion is also suggested by the hint of TeV emission in the short GRB 160821B and a few more events reported in the literature. The missing observational piece is the joint detection of TeV emission and gravitational waves from a short GRB and its progenitor. MAGIC observed the counterpart AT2017gfo as soon as the visibility conditions allowed it, namely from January to June 2018. These observations correspond to the maximum flux level observed in the radio and X-ray bands. The upper limits derived from TeV observations are compared with the modelling of the late non-thermal emission using the multi-frequency SED
MAGIC detection of GRB 201216C at z = 1.1
Gamma-ray bursts (GRBs) are explosive transient events occurring at cosmological distances, releasing a large amount of energy as electromagnetic radiation over several energy bands. We report the detection of the long GRB 201216C by the MAGIC telescopes. The source is located at z = 1.1 and thus it is the farthest one detected at very high energies. The emission above 70 GeV of GRB 201216C is modelled together with multiwavelength data within a synchrotron and synchrotron self-Compton (SSC) scenario. We find that SSC can explain the broad-band data well from the optical to the very-high-energy band. For the late-time radio data, a different component is needed to account for the observed emission. Differently from previous GRBs detected in the very-high-energy range, the model for GRB 201216C strongly favours a wind-like medium. The model parameters have values similar to those found in past studies of the afterglows of GRBs detected up to GeV energies
MAGIC observations of the nearby short GRB 160821B
Gamma-ray bursts (GRBs), the most luminous explosions in the universe, have at least two types known. One of them, short GRBs, have been thought to originate from binary neutron star (BNS) mergers. The discovery of GW170817 together with a GRB was the first and only direct proof of the hypothesis, and thus the properties of the short GRBs are poorly known yet. Aiming to clarify the underlying physical mechanisms of the short GRBs, we analyzed GRB 160821B, one of the nearest short GRBs known at z=0.162, observed with the MAGIC telescopes. A hint of a gamma-ray signal is found above 0.5 TeV at a significance of >3 sigma during observations from 24 seconds until 4 hours after the burst, as presented in the past. Recently, multi-wavelength data of its afterglow emission revealed a well-sampled kilonova component from a BNS merger, and the importance of GRB 160821B increased concerning GRB-GW studies. Accordingly, we investigated GRB afterglow models again, using the revised multi-wavelength data. We found that the straightforward interpretation with one-zone synchrotron self-Compton model from the external forward shock is in tension with the observed TeV flux, contradicting the suggestion reported previously. In this contribution we discuss the implication from the TeV observation, including alternative scenarios where the TeV emission can be enhanced. We also give a brief outlook of future GeV-TeV observations of short GRBs with imaging atmospheric Cherenkov telescopes, which could shed more light on the GRB-BNS merger relation
- …