132 research outputs found

    High daily energy expenditure of incubating shorebirds on High Arctic tundra: a circumpolar study

    Get PDF
    1. Given the allometric scaling of thermoregulatory capacity in birds, and the cold and exposed Arctic environment, it was predicted that Arctic-breeding shorebirds should incur high costs during incubation. Using doubly labelled water (DLW), daily energy expenditure (DEE) during incubation was measured in eight shorebird species weighing between 29 and 142 g at various sites in the Eurasian and Canadian High Arctic. The results are compared with a compilation of similar data for birds at lower latitudes. 2. There was a significant positive correlation between species average DEE and body mass (DEE (kJ day−1) = 28·12 BM (g)^0·524, r^2 = 0·90). The slopes of the allometric regression lines for DEE on body mass of tundra-breeding birds and lower latitude species (a sample mostly of passerines but including several shorebirds) are similar (0·548 vs 0·545). DEE is about 50% higher in birds on the tundra than in temperate breeding areas. 3. Data for radiomarked Red Knots for which the time budgets during DLW measurements were known, indicated that foraging away from the nest on open tundra is almost twice as costly as incubating a four-egg clutch. 4. During the incubation phase in the High Arctic, tundra-breeding shorebirds appear to incur among the highest DEE levels of any time of the year. The rates of energy expenditure measured here are among the highest reported in the literature so far, reaching inferred ceilings of sustainable energy turnover rates.

    Broedsucces van kustbroedvogels in de Waddenzee in 2007 en 2008

    Get PDF
    Voor het derde en vierde opeenvolgende jaar werd het broedsucces van een aantal kustbroedvogels in de Waddenzee bepaald. Van Eider, Scholekster, Kluut, Kokmeeuw, Zilvermeeuw en Visdief, alsmede van Kleine Mantelmeeuw en Noordse Stern werd informatie verzamelen over het nestsucces en uitvliegsucces (het uiteindelijke broedsucces). Kennis over de jaarlijkse variatie in broedresultaten bij de verschillende soorten is van belang als een early warning systeem om de 'kwaliteit' (het reproducerend vermogen) van de vogelpopulaties in de Waddenzee te volgen en de achterliggende processen van populatieveranderingen te doorgronden. Directe aanleiding voor het project vormde de evaluatie van de effectiviteit van het nieuwe schelpdiervisserijbeleid en de mogelijke gevolgen voor de voedselvoorziening van schelpdieretende vogels

    Broedsucces van kustbroedvogels in de Waddenzee : Resultaten 2015-2016 en trends in broedsucces in 2005-2016

    Get PDF
    Data have been collected on the breeding success of several characteristic coastal breeding birds in the Wadden Sea each year since 2005. Ten birds species considered representative of specific habitats and food groups are being monitored. The monitoring scheme on breeding success in coastal breeding birds is run as an ‘early warning system’ to follow the reproductive capacity of the bird populations in the Wadden Sea and understand the processes underlying fluctuations in populations. It is a valuable addition to the monitoring of population numbers and is carried out under a trilateral agreement with Germany and Denmark (TMAP). The results from 2015–2016 and an analysis of data series from the period 2005–2016 (sometimes longer) show that several species on average reared too few young to sustain stable population size in many of these years, especially the Eurasian Oystercatcher, Pied Avocet, Common Tern and Arctic Tern, and in recent years also the Black-headed Gull, whose breeding success has significantly declined since 1995. Other species showing a significant decline in breeding success are the Spoonbill and Common Tern. The only species to show any significant improvement in breeding success since 2005 is the Lesser Black-backed Gul

    The roles of migratory and resident birds in local avian influenza infection dynamics

    Get PDF
    Migratory birds are an increasing focus of interest when it comes to infection dynamics and the spread of avian influenza viruses (AIV ). However, we lack detailed understanding of migratory birds’ contribution to local AIV prevalence levels and their downstream socio‐economic costs and threats. To explain the potential differential roles of migratory and resident birds in local AIV infection dynamics, we used a susceptible‐infectious‐recovered (SIR ) model. We investigated five (mutually non‐ exclusive) mechanisms potentially driving observed prevalence patterns: (1) a pronounced birth pulse (e.g. the synchronised annual influx of immunologically naïve individuals), (2) short‐term immunity, (3) increase in susceptible migrants, (4) differential susceptibility to infection (i.e. transmission rate) for migrants and residents, and (5) replacement of migrants during peak migration. SIR models describing all possible combinations of the five mechanisms were fitted to individual AIV infection data from a detailed longitudinal surveillance study in the partially migratory mallard duck (Anas platyrhynchos ). During autumn and winter, the local resident mallard community also held migratory mallards that exhibited distinct AIV infection dynamics. Replacement of migratory birds during peak migration in autumn was found to be the most important mechanism driving the variation in local AIV infection patterns. This suggests that a constant influx of migratory birds, likely immunological naïve to locally circulating AIV strains, is required to predict the observed temporal prevalence patterns and the distinct differences in prevalence between residents and migrants. Synthesis and applications . Our analysis reveals a key mechanism that could explain the amplifying role of migratory birds in local avian influenza virus infection dynamics; the constant flow and replacement of migratory birds during peak migration. Apart from monitoring efforts, in order to achieve adequate disease management and control in wildlife—with knock‐on effects for livestock and humans,—we conclude that it is crucial, in future surveillance studies, to record host demographical parameters such as population density, timing of birth and turnover of migrants

    Geolocators lead to better measures of timing and renesting in black-tailed godwits and reveal the bias of traditional observational methods

    Get PDF
    Long-term population studies can identify changes in population dynamics over time. However, to realize meaningful conclusions, these studies rely on accurate measurements of individual traits and population characteristics. Here, we evaluate the accuracy of the observational methods used to measure reproductive traits in individually marked black-tailed godwits (Limosa limosa limosa). By comparing estimates from traditional methods with data obtained from light-level geolocators, we provide an accurate estimate of the likelihood of renesting in godwits and the repeatability of the lay dates of first clutches. From 2012 to 2018, we used periods of shading recorded on the light-level geolocators carried by 68 individual godwits to document their nesting behaviour. We then compared these estimates to those simultaneously obtained by our long-term observational study. We found that among recaptured geolocator-carrying godwits, all birds renested after a failed first clutch, regardless of the date of nest loss or the number of days already spent incubating. We also found that 43% of these godwits laid a second replacement clutch after a failed first replacement, and that 21% of these godwits renested after a hatched first clutch. However, the observational study correctly identified only 3% of the replacement clutches produced by geolocator-carrying individuals and designated as first clutches a number of nests that were actually replacement clutches. Additionally, on the basis of the observational study, the repeatability of lay date was 0.24 (95% CI 0.17-0.31), whereas it was 0.54 (95% CI 0.28-0.75) using geolocator-carrying individuals. We use examples from our own and other godwit studies to illustrate how the biases in our observational study discovered here may have affected the outcome of demographic estimates, individual-level comparisons, and the design, implementation and evaluation of conservation practices. These examples emphasize the importance of improving and validating field methodologies and show how the addition of new tools can be transformational

    Eggs in the Freezer: Energetic Consequences of Nest Site and Nest Design in Arctic Breeding Shorebirds

    Get PDF
    Birds construct nests for several reasons. For species that breed in the Arctic, the insulative properties of nests are very important. Incubation is costly there and due to an increasing surface to volume ratio, more so in smaller species. Small species are therefore more likely to place their nests in thermally favourable microhabitats and/or to invest more in nest insulation than large species. To test this hypothesis, we examined characteristics of nests of six Arctic breeding shorebird species. All species chose thermally favourable nesting sites in a higher proportion than expected on the basis of habitat availability. Site choice did not differ between species. Depth to frozen ground, measured near the nests, decreased in the course of the season at similar non-species-specific speeds, but this depth increased with species size. Nest cup depth and nest scrape depth (nest cup without the lining) were unrelated to body mass (we applied an exponent of 0.73, to account for metabolic activity of the differently sized species). Cup depth divided by diameter2 was used as a measure of nest cup shape. Small species had narrow and deep nests, while large species had wide shallow nests. The thickness of nest lining varied between 0.1 cm and 7.6 cm, and decreased significantly with body mass. We reconstruct the combined effect of different nest properties on the egg cooling coefficient using previously published quantitative relationships. The predicted effect of nest cup depth and lining depth on heat loss to the frozen ground did not correlate with body mass, but the sheltering effect of nest cup diameter against wind and the effects of lining material on the cooling coefficient increased with body mass. Our results suggest that small arctic shorebirds invest more in the insulation of their nests than large species
    corecore