361 research outputs found

    Annealing-Induced Changes in the Nature of Point Defects in Sublimation-Grown Cubic Silicon Carbide

    Get PDF
    In recent years, cubic silicon carbide (3C-SiC) has gained increasing interest as semiconductor material for energy saving and optoelectronic applications, such as intermediate-band solar cells, photoelectrochemical water splitting, and quantum key distribution, just to name a few. All these applications critically depend on further understanding of defect behavior at the atomic level and the possibility to actively control distinct defects. In this work, dopants as well as intrinsic defects were introduced into the 3C-SiC material in situ during sublimation growth. A series of isochronal temperature treatments were performed in order to investigate the temperature-dependent annealing behavior of point defects. The material was analyzed by temperature-dependent photoluminescence (PL) measurements. In our study, we found a variation in the overall PL intensity which can be considered as an indication of annealing-induced changes in structure, composition or concentration of point defects. Moreover, a number of dopant-related as well as intrinsic defects were identified. Among these defects, there were strong indications for the presence of the negatively charged nitrogen vacancy complex (NC–VSi)−, which is considered a promising candidate for spin qubits

    A comparison of local phosphorescence detection and fluid dynamic gauging methods for studying the removal of cohesive fouling layers: Effect of layer roughness

    Get PDF
    The performance of industrial cleaning in place (CIP) procedures is critically important for food manufacture. CIP has yet to be optimised for many processes, in part since the mechanisms involved in cleaning are not fully understood. Laboratory tests have an important role in guiding industrial trials, and this paper introduces and compares two experimental techniques developed for studying CIP mechanisms: local phosphorescence detection (LPD), and scanning fluid dynamic gauging (sFDG). To illustrate the comparison, each technique is used to investigate the influence of soil topology on the cleaning of pre-gelatinised starch-based layers from 316 stainless steel substrates by aqueous NaOH solutions at ambient temperature. The roughness of the soil surface is varied by incorporating zinc sulphide particles with different particle size distributions (range 1 - 80 μm) into the starch suspensions. The soil roughness increased with the use of larger particles, increasing the 3D arithmetic mean roughness (Sa) of the dry layers (range 0.37 - 3.33 μm). Rough layers were cleaned more readily than those containing small inclusions, with a good correlation between the cleaning rates observed during LPD and FDG measurements. The LPD technique, which is an instrumented CIP test, gives a better indication of the cleaning time, while sFDG measurements provide further insight into the removal mechanisms.NOTICE: this is the author's version of a work that was accepted for publication in Food Bioproducts Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Bioproducts Proc., 92, 46-53 DOI http://dx.doi.org/10.1016/j.fbp.2013.07.01

    Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency

    Get PDF
    The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate.Link_to_subscribed_fulltex

    Effects of erythropoietin in murine-induced pluripotent cell-derived panneural progenitor cells

    No full text
    Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed functional EPOR signaling. In proliferating cultures, EPO (0.1–3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of β-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis

    Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming

    Get PDF
    SummaryReprogramming of somatic cells achieved by combination of the four transcription factors Oct4, Sox2, Klf4, and c-Myc has very low efficiency. To increase the reprogramming efficiency and better understand the process, we sought to identify factors that mediate reprogramming with higher efficiency. We established an assay to screen nuclear fractions from extracts of pluripotent mouse cells based on Oct4 reactivation. Using proteomics, we identified components of the ATP-dependent BAF chromatin-remodeling complex, which significantly increases reprogramming efficiency when used together with the four factors. The reprogrammed cells could transmit to the germline and exhibited pluripotency. Reprogramming remained highly efficient when c-Myc was not present but BAF components were overexpressed. BAF complex components mediate this effect by facilitating enhanced Oct4 binding to target promoters during reprogramming. Thus, somatic cell reprogramming using chromatin-remodeling molecules represents an efficient method of generating reprogrammed cells

    Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells

    Get PDF
    The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2
    • …
    corecore