23 research outputs found
Far infrared spectroscopy on the three-dimensional dilute antiferromagnet Fe(x)Zn(1-x)F2
Fourier-transform Infrared (FT-IR) Spectroscopy measurements have been
performed on the three-dimensional dilute antiferromagnet Fe(x)Zn(1-x)F2 with
x=0.99 ~ 0.58 in far infrared (FIR) region. The FIR spectra are analyzed taking
into account the ligand field and the local exchange interaction probability
with J1 ~ J3; |J1|,|J3|<<|J2|, where J1, J2 and J3 are the nearest neighbor,
second nearest neighbor and third nearest neighbor exchange interaction
constants, respectively. The concentration dependence of the FIR spectra at low
temperature is qualitatively well reproduced by our analysis, though some
detailed structure remains unexplained.Comment: 10 pages, 3 figure
Direct Observation of the Quantum Energy Gap in S = 1/2 Tetragonal Cuprate Antiferromagnets
Using an electron spin resonance spectrometer covering a wide range of
frequency and magnetic field, we have measured the low energy excitations of
the S=1/2 tetragonal antiferromagnets, Sr_{2}CuO_{2}Cl_{2} and
Sr_{2}Cu_{3}O_{4}Cl_{2}. Our observation of in-plane energy gaps of order 0.1
meV at zero external magnetic field are consistent with a spin wave
calculation, which includes several kinds of quantum fluctuations that remove
frustration. Results agree with other experiments and with exchange anisotropy
parameters determined from a five band Hubbard model.Comment: 4 pages, 3 figure
Ground state numerical study of the three-dimensional random field Ising model
The random field Ising model in three dimensions with Gaussian random fields
is studied at zero temperature for system sizes up to 60^3. For each
realization of the normalized random fields, the strength of the random field,
Delta and a uniform external, H is adjusted to find the finite-size critical
point. The finite-size critical point is identified as the point in the H-Delta
plane where three degenerate ground states have the largest discontinuities in
the magnetization. The discontinuities in the magnetization and bond energy
between these ground states are used to calculate the magnetization and
specific heat critical exponents and both exponents are found to be near zero.Comment: 10 pages, 6 figures; new references and small changes to tex
Ordering in the dilute weakly-anisotropic antiferromagnet Mn(0.35)Zn(0.65)F2
The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated
by neutron scattering in zero field. The Bragg peaks observed below the Neel
temperature TN (approximately 10.9 K) indicate stable antiferromagnetic
long-range ordering at low temperature. The critical behavior is governed by
random-exchange Ising model critical exponents (nu approximately 0.69 and gamma
approximately 1.31), as reported for Mn(x)Zn(1-x)F2 with higher x and for the
isostructural compound Fe(x)Zn(1-x)F2. However, in addition to the Bragg peaks,
unusual scattering behavior appears for |q|>0 below a glassy temperature Tg
approximately 7.0 K. The glassy region T<Tg corresponds to that of noticeable
frequency dependence in earlier zero-field ac susceptibility measurements on
this sample. These results indicate that long-range order coexists with
short-range nonequilibrium clusters in this highly diluted magnet.Comment: 7 pages, 5 figure