The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated
by neutron scattering in zero field. The Bragg peaks observed below the Neel
temperature TN (approximately 10.9 K) indicate stable antiferromagnetic
long-range ordering at low temperature. The critical behavior is governed by
random-exchange Ising model critical exponents (nu approximately 0.69 and gamma
approximately 1.31), as reported for Mn(x)Zn(1-x)F2 with higher x and for the
isostructural compound Fe(x)Zn(1-x)F2. However, in addition to the Bragg peaks,
unusual scattering behavior appears for |q|>0 below a glassy temperature Tg
approximately 7.0 K. The glassy region T<Tg corresponds to that of noticeable
frequency dependence in earlier zero-field ac susceptibility measurements on
this sample. These results indicate that long-range order coexists with
short-range nonequilibrium clusters in this highly diluted magnet.Comment: 7 pages, 5 figure