173 research outputs found

    Effect of dietary saturated and monounsaturated fatty acids in juvenile barramundi Lates calcarifer

    Get PDF
    Barramundi (Lates calcarifer), a catadromous teleost of commercial interest, perform well when fed a wide range of dietary oils. However, the range of alternative oils now being explored is typically rich in saturated and monounsaturated fatty acids (SFA and MUFA). In this study, the response of juvenile barramundi (47.0 g per fish initial weight) fed isolipidic and isoenergetic diets with 82 g kg-1 added oil was tested. The experimental test diets had a 2 : 1 or 1 : 2 ratio of SFA to MUFA (SFA-D and MUFA-D, respectively) compared to a control diet (CTRL-D) fed for 8 weeks. The diets containing mostly olive oil (dietary MUFA-D) and mostly refined palm oil (dietary SFA-D) did not impact the growth performance or feed utilization parameters of the barramundi. The in vivo beta-oxidation activity was consistent with the dietary fatty acid composition, with the most dominant FA being heavily beta-oxidized. Together, the in vivo whole-body mass balance of fatty acids showed that n-3 long-chain polyunsaturated fatty acids (LC-PUFA) were most efficiently utilized in the SFA-D- and MUFA-D-fed fish. This study provides evidence that additional dietary MUFA and SFA are suitable lipid classes for juvenile barramundi and they are both equally efficient at sparing LC-PUFA from an oxidative fate.

    AI Enabled Next-Generation Traffic Control System

    Get PDF
    Traffic is one of the superior problems in modern metropolis. Fresh and advanced technology related infusions are required to supervise themselves and direct traffic signals in order to decrease the snarl-upping of traffic. Major problem is when it comes to a predicament or an emergency circumstance which affects the servicing facilities like ambulances, fire trucks, police vans etc. In this paper, we capture data from the surveillance camera and using it we will train the machine using Machine Learning and Deep Learning. So, the process goes where we use a collective number of images which can be enormous in numbers which can be used to train the model. Subsequently, the vehicles are identified, and are categorized into various classes and this classification is done by itself, as it is edified to precision. We procured 88% accuracy using YOLOv5 for vehicle recognition. Further it contributes to the future, so that road design and scrutiny can be developed and secondly the fuel usage can be controlled, and the standby time is also saved effectively. Within some period, we will be able to harmonize most of the signals, by imparting a flexible traffic management system, thus resulting in declination of traffic congestion

    Diastematomyelia differences in management of diastemetomyelia with associated abnormalities versus isolated diastemetomyelia: a case series

    Get PDF
    Diastematomyelia (DM), also known as split cord malformation (SCM) is a type of spinal dysraphism. It is a very rare congenital spinal anomaly characterized by clefting of the spinal cord due to a partial or complete bony or fibrous septum within the spinal canal with splaying of the posterior spinal elements resulting in localized division of the spinal cord into two parts on either side of the septum which typically reunite below the cleft. The pathology was first described by Cruvelhier in 1853. About 1-3 per 1000 live birth, is the estimated incidence of spinal dysraphism and neural tube defects (NTD) occurs more commonly in females (55-70%). Prenatal diagnosis of DM is possible by ultrasonography (USG). The clinical significance of DM is that it may manifest as an isolated abnormality or in association with other spinal abnormalities such as spina bifida, Arnold-Chiari malformation, hemivertebra, butterfly vertebra, kyphoscoliosis or part of Jarcho-Levin syndrome. The management of pregnancy with a foetus diagnosed with DM antenatally, differs based on whether the foetus has an isolated DM with intact skin or DM with more serious associated anomalies. We present two cases of Foetal DM both diagnosed by antenatal USG, Case 1 was diagnosed at 16 weeks gestation age (GA) with DM associated with Type II Arnold-Chiari malformation, hydrocephalus and case 2 was diagnosed with isolated DM at 19 weeks 2 days GA

    The influence of dietary fatty acid and fasting on the hepatic lipid metabolism of barramundi (Lates calcarifer)

    Get PDF
    For many fish species, dietary fish oil (FO) has been substituted with other oils such as poultry oil (PO) without affecting growth performance. However, in barramundi, the mechanisms by which fatty acid metabolism is regulated are poorly understood, and the effects of FO substitution are unknown. This study defined changes in the expression of genes controlling the metabolism of fatty acids in barramundi over a 24-h time period after a single meal. From one to 12h after a single feeding event, the expression of fatty acid synthesis genes in the liver was upregulated, while genes involved in the β-oxidation showed minimal alteration. However, the expression of β-oxidation genes was significantly correlated with the expression of genes regulating fatty acid synthesis. In a second experiment, the changes in liver fatty acid composition and gene expression were defined after FO was substituted with PO. Liver fatty acid profile reflected the diet composition, with some subtle exceptions supporting the enrichment of certain long-chain polyunsaturated fatty acids in the liver. The fish from all experimental groups preferentially retained more docosahexaenoic acid than eicosapentaenoic acid in the liver, suggesting a bioconversion of this fatty acid to intermediate fatty acids. Replacement of FO with PO significantly regulated genes controlling both fatty acid synthesis and catabolism pathways, potentially related to a higher percentage of monounsaturated fatty acids, in the livers of fish fed these diets. The results demonstrated that diet composition significantly altered the lipid metabolism in barramundi and that there was a balance between direct dietary effects and endogenous synthetic capacity

    Defining the allometric relationship between size and individual fatty acid turnover in barramundi Lates calcarifer

    Get PDF
    An experiment was conducted with barramundi (Asian seabass; Lates calcarifer) to examine the allometric scaling effect of individual fatty acids. Six treatment size classes of fish were deprived of food for 21 days (Treatment A, 10.5 ± 0.13 g; Treatment B, 19.2 ± 0.11 g; Treatment C, 28.3 ± 0.05 g; Treatment D, 122.4 ± 0.10 g; Treatment E, 217.6 ± 0.36 g; Treatment F, 443.7 ± 1.48 g; mean± SD) with each treatment comprising of fifteen fish, in triplicate. The assessment of somatic losses of whole-body energy and lipidwere consistentwith previous studies, validating themethodology to be extended to individual fatty acids. Live-weight (LW)exponent values were determined to be 0.817 ± 0.010 for energy and 0.895 ± 0.007 for lipid. There were significant differences among the fatty acids ranging from 0.687 ± 0.005 for 20:5n-3 (eicosapentaenoic acid) and 0.954 ± 0.008 for 18:1n-9 (oleic acid). The LW exponent values were applied to existing fatty acid intake and deposition data of barramundi fed with either 100% fish oil or 100% poultry oil. From this the maintenance requirement for each fatty acid was determined. The metabolic demands for maintenance and growth were then iteratively determined for fish over a range of size classes. Application of these exponent values to varying levels of fatty acid intake demonstrated that the biggest driver in the utilisation of fatty acids in this species is deposition demand and despite their reputed importance, the long-chain polyunsaturated fatty acids had nominal to no maintenance requirement

    Reducing dietary wild derived fishmeal inclusion levels in production diets for large yellowtail kingfish (Seriola lalandi)

    Get PDF
    Further research to understand the effect of dietary wild derived fishmeal (WD-FM) substitution with commercially relevant alternative ingredients for large yellowtail kingfish (Seriola lalandi; YTK) was investigated. This 36-week study was designed to replace dietary inclusions of WD-FM with alternative protein ingredients including poultry meal, soy protein concentrate and by-product fishmeal (PM, SPC and BP-FM) and measure the effect on the growth performance, feed utilisation, and health of large YTK (2.5 kg initial weight) at ambient water temperatures (average 16.6 °C). Six diets were formulated on a digestible basis to contain 39% digestible protein (∼45–46% crude protein), 23% digestible lipid (∼24–25% crude lipid), and a digestible energy level of 17 MJ kg−1 (∼19 MJ kg−1 gross energy level). Fish were fed to apparent satiation once daily at 10:00 h. Substitution of fish meal with alternative ingredients did not significantly impact fish growth, feed utilisation, gastrointestinal health, blood haematology or measured biochemistry indices. Results from the current study will allow reductions to the dietary WD-FM inclusion levels, with tangible sustainability benefits. The inclusion of the alternative protein sources resulted in improvements in the fish in-fish out ratios of up to 35.1%. This study suggests formulation criteria for large YTK should include a minimum of 10% WD-FM. Further to this, at least 30% of the diet should consist of a combination of poultry meal, soy protein concentrate and fishmeal (both wild and by-product). Our data further support the use of BP-FM up to ∼20% inclusion, while PM and SPC should be limited to ∼10% inclusion until further data is available on these raw materials in YTK feeds. These recommendations will facilitate formulation flexibility for large YTK feeds, enabling formulators to adapt to changes to extrinsic factors such as raw material availability, and sustainability while minimising cost and performance impacts

    Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer)

    Get PDF
    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2 % added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish

    The effect of marine and non-marine phospholipid rich oils when fed to juvenile barramundi (Lates calcarifer)

    Get PDF
    An experiment was conducted to assess the response of juvenile barramundi (Lates calcarifer) to four diets containing either marine- or non-marine derived neutral lipid (NL) or polar lipid (PL) sources for eight weeks in a 2 × 2 factorial design. The four diets contained 8.2% added lipid composed of a 1% fish oil base with 7.2% test lipid (n - 3 NL: Fish oil, n - 3 PL: Krill oil, n - 6 NL: Soybean oil, n - 6 PL: Soybean lecithin). The results demonstrated that the different lipid sources (either n - 3 or n - 6 omega series from either NL or PL class) had significant effects on growth performance and feed utilisation with some interaction terms noted. Growth was negatively affected in the n - 6 NL fish and the feed conversion (FCR) was highest in the n - 6 PL fish. Digestibility of total lipid and some specific fatty acids (notably 18:2n - 6 and 18:3n - 3) were also negatively affected in the n - 6 PL fish. Analysis of the whole body neutral lipid fatty acid composition showed that these mirrored those of the diets and significant interaction terms were noted. However, the whole body polar lipid fatty acids appeared to be more tightly regulated in comparison. The blood plasma biochemistry and hepatic transcription of several fatty acid metabolism genes in the n - 6 PL fed and to a lesser extent in the n - 6 NL fed fish demonstrated a pattern consistent with modified metabolic function. These results support that there are potential advantages in using phospholipid-rich oils however there are clear differences in terms of their origin. Statement of relevance: Juvenile barramundi may benefit from dietary phospholipid. © 2016 Elsevier B.V

    Marginal efficiencies of long chain-polyunsaturated fatty acid use by barramundi (Lates calcarifer) when fed diets with varying blends of fish oil and poultry fat

    Get PDF
    An experiment was conducted with barramundi (Lates calcarifer) juveniles to examine the marginal efficiency of utilisation of long chain-polyunsaturated fatty acids (LC-PUFA). A series of five diets with blends of fish (anchovy) oil and poultry fat (F100:P0, F60:P40, F30:P70, F15:P85, F0:P100) were fed to 208. ±. 4.1. g fish over a 12-week period. The replacement of fish oil with poultry fat had no impact on growth performance (average final weight of 548.3. ±. 10.2. g) or feed conversion (mean. =. 1.14. ±. 0.02). Analysis of the whole body composition showed that the fatty acid profile reflected that of the fed diet. However it was also shown that there was a disproportional retention of some fatty acids relative to others (notably LOA, 18:2n-6 and LNA, 18:3n-3). By examining the body mass independent retention of different fatty acids with differential levels of intake of each, the marginal efficiencies of the use of these nutrients by this species were able to be determined. The differential retention of fatty acids in the meat was also examined allowing the determination of oil blending strategies to optimise meat n-3 LC-PUFA levels. © 2015 Elsevier B.V
    • …
    corecore