2,383 research outputs found

    Proper Motions of H2O Masers in the Water Fountain Source IRAS 19190+1102

    Full text link
    We report on the results of two epochs of Very Long Baseline Array (VLBA) observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser emission from this object shows two main arc-shaped formations perpendicular to their NE-SW separation axis. The arcs are separated by ~280 mas in position, and are expanding outwards at an angular rate of 2.35 mas/yr. We detect maser emission at velocities between -53.3 km/s to +78.0 km/s and there is a distinct velocity pattern where the NE masers are blueshifted and the SW masers are redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km/s and a dynamical age of about 59 yr. A group of blueshifted masers not located along the arcs shows a change in velocity of more than 35 km/s between epochs, and may be indicative of the formation of a new lobe. These observations show that IRAS 19190+1102 is a member of the class of "water fountain"' pre-planetary nebulae displaying bipolar structureComment: Accepted for publication in ApJ, corrected typo

    Development of an (AlGaAs-Ga As) graded band gap solar cell

    Get PDF
    The results of an experimental program to develop the epitaxial growth techniques and analytical characterization techniques to fabricate graded bandgap solar cells are reported

    A Study of H2 Emission in Three Bipolar Proto-Planetary Nebulae: IRAS 16594-4656, Hen 3-401, and Rob 22

    Full text link
    We have carried out a spatial-kinematical study of three proto-planetary nebulae, IRAS 16594-4656, Hen 3-401, and Rob 22. High-resolution H2 images were obtained with NICMOS on the HST and high-resolution spectra were obtained with the Phoenix spectrograph on Gemini-South. IRAS 16594-4656 shows a "peanut-shaped" bipolar structure with H2 emission from the walls and from two pairs of more distant, point-symmetric faint blobs. The velocity structure shows the polar axis to be in the plane of the sky, contrary to the impression given by the more complex visual image and the visibility of the central star, with an ellipsoidal velocity structure. Hen 3-401 shows the H2 emission coming from the walls of the very elongated, open-ended lobes seen in visible light, along with a possible small disk around the star. The bipolar lobes appear to be tilted 10-15 deg with respect to the plane of the sky and their kinematics display a Hubble-like flow. In Rob 22, the H2 appears in the form of an "S" shape, approximately tracing out the similar pattern seen in the visible. H2 is especially seen at the ends of the lobes and at two opposite regions close to the unseen central star. The axis of the lobes is nearly in the plane of the sky. Expansion ages of the lobes are calculated to be approximately 1600 yr (IRAS 16594-4656), 1100 yr (Hen 3-401), and 640 yr (Rob 22), based upon approximate distances

    Spitzer IRS Spectra of Luminous 8 micron Sources in the Large Magellanic Cloud: Testing color-based classifications

    Full text link
    We present archival Spitzer IRS spectra of 19 luminous 8 micron selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on 2MASS/MSX (J, H, K, and 8 micron) colors in order to test the "JHK8" classification scheme (Kastner et al. 2008). The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich asymptotic giant branch stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission, through the use of IRAC [3.6]-[4.5] and 2MASS colors.Comment: 31 pages, 10 figures, to be published in A

    The enigmatic B[e]-star Henize 2-90: The non-spherical mass loss history from an analysis of forbidden lines

    Full text link
    (abridged) We study the optical spectrum of the exciting B[e] star Hen 2-90 based on new high-resolution observations that cover the innermost 2". Our investigation is splitted in two parts, a qualitative study of the presence of the numerous emission lines and the classification of their line profiles which indicate a circumstellar environment of high complexity, and a quantitative analysis of numerous forbidden lines, e.g. [OI], [OII], [OIII], [SII], [SIII], [ArIII], [ClII], [ClIII] and [NII]. We find a correlation between the different ionization states of the elements and the velocities derived from the line profiles: the highly ionized atoms have the highest outflow velocity while the neutral lines have the lowest outflow velocity. The recent HST image of Hen 2-90 reveals a bipolar, highly ionized region, a neutral disk-like structure and an intermediate region of moderate ionization. It seems that a non-spherical stellar wind model is a good option to explain the ionization and spatial distribution of the circumstellar material. We modelled the forbidden lines under the assumption of a non-spherically symmetric wind based on the HST image. We find that in order to fit the observed line luminosities, the mass flux, surface temperature, and terminal wind velocities need to be latitude dependent, which might be explained in terms of a rapidly rotating central star. A rotation speed of 75-80 % of the critical velocity has been derived. The total mass loss rate of the star was determined to be of order 3 10^{-5} M_sun/yr. Such a wind scenario and the fact that compared to solar abundances C, O, and N seem to be underabundant while S, Ar and Cl have solar abundances, might be explained in terms of a rapidly rotating post-AGB star.Comment: 16 pages, 13 figures, accepted for publication in A&A. Table 4 is included at the end of the paper. This table will only be available in the online version of the paper and will not appear in the printed versio

    Shocked and Scorched: The Tail of a Tadpole in an Interstellar Pond

    Full text link
    We report multi-wavelength observations of the far-infrared source IRAS 20324+4057, including high-resolution optical imaging with HST, and ground-based near-infrared, millimeter-wave and radio observations. These data show an extended, limb-brightened, tadpole-shaped nebula with a bright, compact, cometary nebula located inside the tadpole head. Our molecular line observations indicate that the Tadpole is predominantly molecular, with a total gas mass exceeding 3.7 Msun. Our radio continuum imaging, and archival Spitzer IRAC images, show the presence of additional tadpole-shaped objects in the vicinity of IRAS 20324+4057 that share a common E-W head-tail orientation: we propose that these structures are small, dense molecular cores that originated in the Cygnus cloud and are now being (i) photoevaporated by the ultraviolet radiation field of the Cyg OB2 No. 8 cluster located to the North-West, and (ii) shaped by ram pressure of a distant wind source or sources located to the West, blowing ablated and photoevaporated material from their heads eastwards. The ripples in the tail of the Tadpole are interpreted in terms of instabilities at the interface between the ambient wind and the dense medium of the former.Comment: (accepted by the Astrophysical Journal

    A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae

    Full text link
    We present the results of far-infrared imaging of extended regions around three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS 16342−-3814, at 70 and 160 μ\mum with the MIPS instrument on the Spitzer Space Telescope. After a careful subtraction of the point spread function of the central star from these images, we place constraints on the existence of extended shells and thus on the mass outflow rates as a function of radial distance from these stars. We find no apparent extended emission in AFGL 2688 and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of AFGL 2688, this result is inconsistent with a previous report of two extended dust shells made on the basis of ISO observations. We derive an upper limit of 2.1×10−72.1\times10^{-7} M⊙_\odot yr−1^{-1} and 1.0×10−71.0\times10^{-7} M⊙_\odot yr−1^{-1} for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively, at 200 arcseconds from each source. In contrast to these two sources, IRAS 16342−-3814 does show extended emission at both wavelengths, which can be interpreted as a very large dust shell with a radius of ∼\sim 400 arcseconds and a thickness of ∼\sim 100 arcseconds, corresponding to 4 pc and 1 pc, respectively, at a distance of 2 kpc. However, this enhanced emission may also be galactic cirrus; better azimuthal coverage is necessary for confirmation of a shell. If the extended emission is a shell, it can be modeled as enhanced mass outflow at a dust mass outflow rate of 1.5×10−61.5\times10^{-6} M⊙_\odot yr−1^{-1} superimposed on a steady outflow with a dust mass outflow rate of 1.5×10−71.5\times10^{-7} M⊙_\odot yr−1^{-1}. It is likely that this shell has swept up a substantial mass of interstellar gas during its expansion, so these estimates are upper limits to the stellar mass loss rate.Comment: 31 pages, 12 figures, accepted to A
    • …
    corecore