251 research outputs found
Fluid-fluid phase separation in hard spheres with a bimodal size distribution
The effect of polydispersity on the phase behaviour of hard spheres is
examined using a moment projection method. It is found that the
Boublik-Mansoori-Carnahan-Starling-Leland equation of state shows a spinodal
instability for a bimodal distribution if the large spheres are sufficiently
polydisperse, and if there is sufficient disparity in mean size between the
small and large spheres. The spinodal instability direction points to the
appearance of a very dense phase of large spheres.Comment: 7 pages, 3 figures, moderately REVISED following referees' comments
(original was 4 pages, 3 postscript figures
Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion
We study gelation in suspensions of model colloidal particles with
short-ranged attractive and long-ranged repulsive interactions by means of
three-dimensional fluorescence confocal microscopy. At low packing fractions,
particles form stable equilibrium clusters. Upon increasing the packing
fraction the clusters grow in size and become increasingly anisotropic until
finally associating into a fully connected network at gelation. We find a
surprising order in the gel structure. Analysis of spatial and orientational
correlations reveals that the gel is composed of dense chains of particles
constructed from face-sharing tetrahedral clusters. Our findings imply that
dynamical arrest occurs via cluster growth and association.Comment: Final version: Phys. Rev. Lett. 94, 208301 (2005
Three-phase point in a binary hard-core lattice model?
Using Monte Carlo simulation, Van Duijneveldt and Lekkerkerker [Phys. Rev.
Lett. 71, 4264 (1993)] found gas-liquid-solid behaviour in a simple
two-dimensional lattice model with two types of hard particles. The same model
is studied here by means of numerical transfer matrix calculations, focusing on
the finite size scaling of the gaps between the largest few eigenvalues. No
evidence for a gas-liquid transition is found. We discuss the relation of the
model with a solvable RSOS model of which the states obey the same exclusion
rules. Finally, a detailed analysis of the relation with the dilute three-state
Potts model strongly supports the tricritical point rather than a three-phase
point.Comment: 17 pages, LaTeX2e, 13 EPS figure
Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains
Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using
the ab initio coupled-cluster singles and doubles (CCSD) correlation method.
The correlation contribution to the binding energy is decomposed in terms of
nonadditive many-body interactions between the monomers in the chains, the
so-called energy increments. Van der Waals constants for the two-body
dispersion interaction between distant monomers in the infinite chains are
extracted from this decomposition. They allow a partitioning of the correlation
contribution to the binding energy into short- and long-range terms. This
finding affords a significant reduction in the computational effort of ab
initio calculations for solids as only the short-range part requires a
sophisticated treatment whereas the long-range part can be summed immediately
to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo
The effect of size ratio on the sphere structure factor in colloidal sphere-plate mixtures
The following article appeared in Journal of Chemical Physics 137.20 (2012): 204909 and may be found at http://scitation.aip.org/content/aip/journal/jcp/137/20/10.1063/1.4767722Binary mixtures of colloidal particles of sufficiently different sizes or shapes tend to demix at high concentration. Already at low concentration, excluded volume interactions between the two species give rise to structuring effects. Here, a new theoretical description is proposed of the structure of colloidal sphere-plate mixtures, based on a density expansion of the work needed to insert a pair of spheres and a single sphere in a sea of them, in the presence or not of plates. The theory is first validated using computer simulations. The predictions are then compared to experimental observations using silica spheres and gibbsite platelets. Small-angle neutron scattering was used to determine the change of the structure factor of spheres on addition of platelets, under solvent contrast conditions where the platelets were invisible. Theory and experiment agreed very well for a platelet/sphere diameter ratio Dd 2.2 and reasonably well for Dd 5. The sphere structure factor increases at low scattering vector Q in the presence of platelets; a weak reduction of the sphere structure factor was predicted at larger Q, and for the system with Dd 2.2 was indeed observed experimentally. At fixed particle volume fraction, an increase in diameter ratio leads to a large change in structure factor. Systems with a larger diameter ratio also phase separate at lower concentrationsG. Cinacchi was supported by the EU through a Marie Curie Research Fellowship PIEF-GA-2008-220557 and now by the Ministry of Research of Spain through the Ramón y Cajal contract (Contract. No. RYC-2010-07475). N. Doshi was jointly supported by Imerys and EPSRC DTA. Experiments at ILL were supported by beamtime allocations 9-12- 216 and 9-10-1044. Materials were kindly donated by AZ Electronics (Klebosol) and Lubrizol (Solsperse 41000
- …