2,256 research outputs found

    Resolved Spectroscopy of the T8.5 and Y0-0.5 Binary WISEPC J121756.91+162640.2AB

    Full text link
    We present 0.9 - 2.5 um resolved spectra for the ultracool binary WISEPC J121756.91+162640.2AB. The system consists of a pair of brown dwarfs that straddles the currently defined T/Y spectral type boundary. We use synthetic spectra generated by model atmospheres that include chloride and sulfide clouds (Morley et al.), the distance to the system (Dupuy & Kraus), and the radius of each component based on evolutionary models (Saumon & Marley) to determine a probable range of physical properties for the binary. The effective temperature of the T8.5 primary is 550 - 600 K, and that of the Y0 - Y0.5 secondary is 450 K. The atmospheres of both components are either free of clouds or have extremely thin cloud layers. We find that the masses of the primary and secondary are 30 and 22 M_Jup, respectively, and that the age of the system is 4 - 8 Gyr. This age is consistent with astrometric measurements (Dupuy & Kraus) that show that the system has kinematics intermediate between those of the thin and thick disks of the Galaxy. An older age is also consistent with an indication by the H - K colors that the system is slightly metal-poor.Comment: 21 pages which include 6 Figures and 3 Tables. Accepted on November 8 2013 for publication in Ap

    Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related cues

    Get PDF
    Fire is an integral component of many ecosystems worldwide. Many plant species require fire-related cues, primarily heat and smoke, to trigger germination. Despite the importance of this process, the responses of many Australian species to these cues are unknown. Without this knowledge fire management strategies may be developed that are inappropriate for individual species and vegetation communities. In this study we examined the responses of a dry sclerophyll forest seed bank to heat and smoke germination cues. Analysis was possible for 48 taxa within the soil seedbank with 34 of these showing a response to one or both of the germination cues. 10 species responded to the heat treatment, 11 species responded to the smoke treatment and 13 species responded to both the heat and smoke treatments. Germination cues acted independently for all species considered. Results in this study were consistent with published reports for most species, although some differences were seen at the species and genus level. The study highlights the importance of fire-related cues in enhancing germination of a large proportion of the species occurring in dry sclerophyll forests

    Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity

    Get PDF
    Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders

    Rescue of long-term memory after reconsolidation blockade

    Get PDF
    Memory reconsolidation is considered to be the process whereby stored memories become labile on recall, allowing updating. Blocking the restabilization of a memory during reconsolidation is held to result in a permanent amnesia. The targeted knockdown of either Zif268 or Arc levels in the brain, and inhibition of protein synthesis, after a brief recall results in a non-recoverable retrograde amnesia, known as reconsolidation blockade. These experimental manipulations are seen as key proof for the existence of reconsolidation. However, here we demonstrate that despite disrupting the molecular correlates of reconsolidation in the hippocampus, rodents are still able to recover contextual memories. Our results challenge the view that reconsolidation is a separate memory process and instead suggest that the molecular events activated initially at recall act to constrain premature extinction

    Cyfip1 Haploinsufficiency Does Not Alter GABAA Receptor δ-Subunit Expression and Tonic Inhibition in Dentate Gyrus PV+ Interneurons and Granule Cells

    Get PDF
    Copy number variation (CNV) at chromosomal region 15q11.2 is linked to increased risk of neurodevelopmental disorders including autism and schizophrenia. A significant gene at this locus is cytoplasmic fragile X mental retardation protein (FMRP) interacting protein 1 (CYFIP1). CYFIP1 protein interacts with FMRP, whose monogenic absence causes fragile X syndrome (FXS). Fmrp knock-out has been shown to reduce tonic GABAergic inhibition by interacting with the δ-subunit of the GABAA receptor (GABAAR). Using in situ hybridization (ISH), qPCR, Western blotting techniques, and patch clamp electrophysiology in brain slices from a Cyfip1 haploinsufficient mouse, we examined δ-subunit mediated tonic inhibition in the dentate gyrus (DG). In wild-type (WT) mice, DG granule cells (DGGCs) responded to the δ-subunit-selective agonist THIP with significantly increased tonic currents. In heterozygous mice, no significant difference was observed in THIP-evoked currents in DGGCs. Phasic GABAergic inhibition in DGGC was also unaltered with no difference in properties of spontaneous IPSCs (sIPSCs). Additionally, we demonstrate that DG granule cell layer (GCL) parvalbumin-positive interneurons (PV+-INs) have functional δ-subunit-mediated tonic GABAergic currents which, unlike DGGC, are also modulated by the ι1-selective drug zolpidem. Similar to DGGC, both IPSCs and THIP-evoked currents in PV+-INs were not different between Cyfip1 heterozygous and WT mice. Supporting our electrophysiological data, we found no significant change in hippocampal δ-subunit mRNA expression or protein level and no change in ι1/ι4-subunit mRNA expression. Thus, Cyfip1 haploinsufficiency, mimicking human 15q11.2 microdeletion syndrome, does not alter hippocampal phasic or tonic GABAergic inhibition, substantially differing from the Fmrp knock-out mouse model

    Human Powered Vehicle Frame Design

    Get PDF
    This report discusses the Human Powered Vehicle Frame Design senior project’s contributions to the design, manufacture, testing, and competition of the Cal Poly Human Powered Vehicle Club’s 2015 vehicle, Sweet Phoenix. The project’s guiding rules and timeline were dictated by the ASME Human Powered Vehicle Challenge (HPVC), held in April 2015. The Club sought to improve upon its previous vehicle, Aria, which suffered from a range of faults including a catastrophic structural failure at the 2014 HPVC. Largely in response to this failure, the Frame Design project’s major focus was Sweet Phoenix’s frame, from concept to manufacturing. During the design process in the Spring and Fall of 2014, several other issues were tackled in order to define the frame’s design parameters. These secondary efforts included the fairing shape, vehicle stability requirements, handling characteristics, and rider ergonomics. A handling prototype was constructed in late Fall 2014, which successfully validated the solutions to these secondary requirements before the final design was constructed. Ultimately, Sweet Phoenix’s frame is a hybrid design – a composite monocoque fairing to which several weldments are mechanically fastened. The team used extensive finite element analysis to evaluate structural properties for both of these frame subsystems during the final development stages. Sweet Phoenix was produced during the Winter quarter of 2015, with much physical help from the HPV Club members and financial support from several sponsors. The production effort was quite successful, in part thanks to two significant manufacturing improvements – sponsored out-of-house machining of the fairing tools, and a frame-to-fairing alignment jig. The vehicle’s construction quality was recognized at HPVC with a “Best Craftsmanship” award. Testing of the final vehicle revealed very low stiffness of the weldments’ fairing mounts, which was resolved by adding additional bracing locations to the fairing. In addition, the team discovered several drivetrain-related issues that were attacked with numerous attempted solutions, but were not solved prior to HPVC. The drivetrain also contributed to localized delamination of the fairing near a chain idler pulley mount. Unfortunately, these drivetrain issues resulted in several broken chains and poor performance in the acceleration-heavy Endurance Event at HPVC. On the other hand, Sweet Phoenix placed 1st in Design and Men’s Sprint, both satisfying results for the Club, and the Frame Design project was an overall success

    Reducing delays in the diagnosis and treatment of muscle-invasive bladder cancer using simulation modelling

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record Objective: To develop a simulation model to identify key bottlenecks in the bladder cancer pathway at Royal Cornwall Hospital and predict the impact of potential changes to reduce these delays. Materials and methods: The diagnosis and treatment of muscle-invasive bladder cancer can suffer numerous delays, which can significantly affect patient outcomes. We developed a discrete event computer simulation model of the flow of patients through the bladder cancer pathway at the hospital, using anonymised patient records from 2014 and 2015. The changes tested in the model were for patients suspected to have muscle-invasive disease on flexible cystoscopy. Those patients were ‘fast-tracked’ to receive their transurethral resection of bladder tumour (TURBT) treatment using operating slots kept free for these patients. A staging computed tomography scan was booked in the haematuria clinic. Pathology requests were marked as 48 hour turnaround. The nurse specialist would then speak to the patient whilst they were on the ward following their TURBT to give information about their ongoing treatment and provide support. Results: The model predicted that if the changes were implemented, delays in the system could be reduced by around 5 weeks. The changes were implemented, and analysis of 3 months of the data post-implementation shows that the average time in the system was reduced by 5 weeks. The environment created by the changes in the pathway improved referral to treatment times in both muscle-invasive and non-muscle-invasive groups. Conclusion: The simulation model proved an invaluable tool for facilitating the implementation of changes. Simple changes to the pathway led to significant reductions in delays for bladder cancer patients at Royal Cornwall Hospital. Level of evidence: Not applicable for this cohort study.National Institute for Health Research (NIHR
    • …
    corecore