678 research outputs found
Optical far-infrared properties of graphene monolayer and multilayers
We analyze the features of the graphene mono- and multilayer reflectance in
the far-infrared region as a function of frequency, temperature, and carrier
density taking the intraband conductance and the interband electron absorbtion
into account. The dispersion of plasmon mode of the multilayers is calculated
using Maxwell's equations with the influence of retardation included. At low
temperatures and high electron densities, the reflectance of multilayers as a
function of frequency has the sharp downfall and the subsequent deep well due
to the threshold of electron interband absorbtion.Comment: 9 pages, 4 figure
Effect of Antiferromagnetic Interlayer Coupling on Current-Assisted Magnetization Switching
We compare magnetization switching in Co/Cu/Co nanopillars with uncoupled and
dipole-field coupled Co layers. In uncoupled nanopillars, current-driven
switching is hysteretic at low magnetic field H and changes to reversible,
characterized by telegraph noise, at high H. We show that dipolar coupling both
affects the switching current and causes the switching to become reversible at
small H. The coupling thus changes the switching to reversible, hysteretic, and
then reversible again as H increases. We describe our results in terms of
current-assisted thermal activation.Comment: 3 pages, 3 figure
Temperature- and Bias-dependence of magnetoresistance in doped manganite thin film trilayer junctions
Thin film trilayer junction of LaSrMnO - SrTiO -
LaSrMnO shows a factor of 9.7 change in resistance, in a
magnetic field around 100 Oe at 14K. The junction magnetoresistance is bias and
temperature dependent. The energy scales associated with bias and temperature
dependence are an order of magnitude apart. The same set of energies also
determine the bias and temperature dependence of the differential conductance
of the junction. We discuss these results in terms of metallic cluster
inclusions at the junction-barrier interface.Comment: 3 pages, 4 figure
Current-induced spin-wave excitations in a single ferromagnetic layer
A new current induced spin-torque transfer effect has been observed in a
single ferromagnetic layer without resorting to multilayers. At a specific
current density of one polarity injected from a point contact, abrupt
resistance changes due to current-induced spin wave excitations have been
observed. The critical current at the onset of spin-wave excitations depends
linearly on the external field applied perpendicular to the layer. The observed
effect is due to current-driven heterogeneity in an otherwise uniform
ferromagnetic layer.Comment: 12 pages, 4 figure
Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions
Application of Bardeen's tunneling theory to magnetic tunnel junctions having
a general degree of atomic disorder reveals the close relationship between
magneto-conduction and voltage-driven pseudo-torque, as well as the thickness
dependence of tunnel-polarization factors. Among the results: 1) The torque
generally varies as sin theta at constant applied voltage. 2) Whenever
polarization factors are well defined, the voltage-driven torque on each moment
is uniquely proportional to the polarization factor of the other magnet. 3) At
finite applied voltage, this relation predicts significant voltage-asymmetry in
the torque. For one sign of voltage the torque remains substantial even when
the magnetoconductance is greatly diminished. 4) A broadly defined junction
model, called ideal middle, allows for atomic disorder within the magnets and
F/I interface regions. In this model, the spin dependence of a state-weighting
factor proportional to the sum over general state index of evaluated within the
(e.g. vacuum) barrier generalizes the local state density in previous theories
of the tunnel-polarization factor. 5) For small applied voltage,
tunnel-polarization factors remain legitimate up to first order in the inverse
thickness of the ideal middle. An algebraic formula describes the first-order
corrections to polarization factors in terms of newly defined lateral
auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few
notations and equations are changed, and references completed. No change in
results. 17 pages including 4 figure
Rotating vortex dipoles in ferromagnets
Vortex-antivortex pairs are localized excitations and have been found to be
spontaneously created in magnetic elements. In the case that the vortex and the
antivortex have opposite polarities the pair has a nonzero topological charge,
and it behaves as a rotating vortex dipole. We find theoretically, and confirm
numerically, the form of the energy as a function of the angular momentum of
the system and the associated rotation frequencies. We discuss the process of
annihilation of the pair which changes the topological charge of the system by
unity while its energy is monotonically decreasing. Such a change in the
topological charge affects profoundly the dynamics in the magnetic system. We
finally discuss the connection of our results with Bloch Points (BP) and the
implications for BP dynamics.Comment: 6 pages, 2 figure
Thin-Film Trilayer Manganate Junctions
Spin-dependent conductance across a manganate-barrier-manganate junction has
recently been demonstrated. The junction is a LaSrMnO%
-SrTiO-La SrMnO trilayer device supporting
current-perpendicular transport. Large magnetoresistance of up to a factor of
five change was observed in these junctions at 4.2K in a relatively low field
of the order of 100 Oe. Temperature and bias dependent studies revealed a
complex junction interface structure whose materials physics has yet to be
understood.Comment: 20 pages, 14 figures. To appear in Phil. Trans. R. Soc. Lond. A
vol.356 (1998
Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films
We perform a scaling analysis of the mean velocity of extended magnetic
domain walls driven in ultrathin Pt/Co/Pt ferromagnetic films with
perpendicular anisotropy, as a function of the applied external field for
different film-thicknesses. We find that the scaling of the experimental data
around the thermally rounded depinning transition is consistent with the
universal depinning exponents theoretically expected for elastic interfaces
described by the one-dimensional quenched Edwards-Wilkinson equation. In
particular, values for the depinning exponent and thermal rounding
exponent are tested and the present analysis of the experimental data is
compatible with and , in agreement with numerical
simulations.Comment: 8 pages, 8 figure
Thermally assisted magnetization reversal in the presence of a spin-transfer torque
We propose a generalized stochastic Landau-Lifshitz equation and its
corresponding Fokker-Planck equation for the magnetization dynamics in the
presence of spin transfer torques. Since the spin transfer torque can pump a
magnetic energy into the magnetic system, the equilibrium temperature of the
magnetic system is ill-defined. We introduce an effective temperature based on
a stationary solution of the Fokker-Planck equation. In the limit of high
energy barriers, the law of thermal agitation is derived. We find that the
N\'{e}el-Brown relaxation formula remains valid as long as we replace the
temperature by an effective one that is linearly dependent of the spin torque.
We carry out the numerical integration of the stochastic Landau-Lifshitz
equation to support our theory. Our results agree with existing experimental
data.Comment: 5 figure
- …