678 research outputs found

    Optical far-infrared properties of graphene monolayer and multilayers

    Full text link
    We analyze the features of the graphene mono- and multilayer reflectance in the far-infrared region as a function of frequency, temperature, and carrier density taking the intraband conductance and the interband electron absorbtion into account. The dispersion of plasmon mode of the multilayers is calculated using Maxwell's equations with the influence of retardation included. At low temperatures and high electron densities, the reflectance of multilayers as a function of frequency has the sharp downfall and the subsequent deep well due to the threshold of electron interband absorbtion.Comment: 9 pages, 4 figure

    Effect of Antiferromagnetic Interlayer Coupling on Current-Assisted Magnetization Switching

    Full text link
    We compare magnetization switching in Co/Cu/Co nanopillars with uncoupled and dipole-field coupled Co layers. In uncoupled nanopillars, current-driven switching is hysteretic at low magnetic field H and changes to reversible, characterized by telegraph noise, at high H. We show that dipolar coupling both affects the switching current and causes the switching to become reversible at small H. The coupling thus changes the switching to reversible, hysteretic, and then reversible again as H increases. We describe our results in terms of current-assisted thermal activation.Comment: 3 pages, 3 figure

    Temperature- and Bias-dependence of magnetoresistance in doped manganite thin film trilayer junctions

    Full text link
    Thin film trilayer junction of La%_{0.67}Sr0.33_{0.33}MnO3_3 - SrTiO3_3 - La0.67_{0.67}Sr0.33_{0.33}MnO3_3 shows a factor of 9.7 change in resistance, in a magnetic field around 100 Oe at 14K. The junction magnetoresistance is bias and temperature dependent. The energy scales associated with bias and temperature dependence are an order of magnitude apart. The same set of energies also determine the bias and temperature dependence of the differential conductance of the junction. We discuss these results in terms of metallic cluster inclusions at the junction-barrier interface.Comment: 3 pages, 4 figure

    Current-induced spin-wave excitations in a single ferromagnetic layer

    Full text link
    A new current induced spin-torque transfer effect has been observed in a single ferromagnetic layer without resorting to multilayers. At a specific current density of one polarity injected from a point contact, abrupt resistance changes due to current-induced spin wave excitations have been observed. The critical current at the onset of spin-wave excitations depends linearly on the external field applied perpendicular to the layer. The observed effect is due to current-driven heterogeneity in an otherwise uniform ferromagnetic layer.Comment: 12 pages, 4 figure

    Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions

    Full text link
    Application of Bardeen's tunneling theory to magnetic tunnel junctions having a general degree of atomic disorder reveals the close relationship between magneto-conduction and voltage-driven pseudo-torque, as well as the thickness dependence of tunnel-polarization factors. Among the results: 1) The torque generally varies as sin theta at constant applied voltage. 2) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely proportional to the polarization factor of the other magnet. 3) At finite applied voltage, this relation predicts significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even when the magnetoconductance is greatly diminished. 4) A broadly defined junction model, called ideal middle, allows for atomic disorder within the magnets and F/I interface regions. In this model, the spin dependence of a state-weighting factor proportional to the sum over general state index of evaluated within the (e.g. vacuum) barrier generalizes the local state density in previous theories of the tunnel-polarization factor. 5) For small applied voltage, tunnel-polarization factors remain legitimate up to first order in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to polarization factors in terms of newly defined lateral auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few notations and equations are changed, and references completed. No change in results. 17 pages including 4 figure

    Rotating vortex dipoles in ferromagnets

    Full text link
    Vortex-antivortex pairs are localized excitations and have been found to be spontaneously created in magnetic elements. In the case that the vortex and the antivortex have opposite polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find theoretically, and confirm numerically, the form of the energy as a function of the angular momentum of the system and the associated rotation frequencies. We discuss the process of annihilation of the pair which changes the topological charge of the system by unity while its energy is monotonically decreasing. Such a change in the topological charge affects profoundly the dynamics in the magnetic system. We finally discuss the connection of our results with Bloch Points (BP) and the implications for BP dynamics.Comment: 6 pages, 2 figure

    Thin-Film Trilayer Manganate Junctions

    Full text link
    Spin-dependent conductance across a manganate-barrier-manganate junction has recently been demonstrated. The junction is a La0.67_{0.67}Sr0.33_{0.33}MnO3_3% -SrTiO3_3-La0.67_{0.67} Sr0.33_{0.33}MnO3_3 trilayer device supporting current-perpendicular transport. Large magnetoresistance of up to a factor of five change was observed in these junctions at 4.2K in a relatively low field of the order of 100 Oe. Temperature and bias dependent studies revealed a complex junction interface structure whose materials physics has yet to be understood.Comment: 20 pages, 14 figures. To appear in Phil. Trans. R. Soc. Lond. A vol.356 (1998

    Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films

    Full text link
    We perform a scaling analysis of the mean velocity of extended magnetic domain walls driven in ultrathin Pt/Co/Pt ferromagnetic films with perpendicular anisotropy, as a function of the applied external field for different film-thicknesses. We find that the scaling of the experimental data around the thermally rounded depinning transition is consistent with the universal depinning exponents theoretically expected for elastic interfaces described by the one-dimensional quenched Edwards-Wilkinson equation. In particular, values for the depinning exponent β\beta and thermal rounding exponent ψ\psi are tested and the present analysis of the experimental data is compatible with β=0.33\beta=0.33 and ψ=0.2\psi=0.2, in agreement with numerical simulations.Comment: 8 pages, 8 figure

    Thermally assisted magnetization reversal in the presence of a spin-transfer torque

    Full text link
    We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation for the magnetization dynamics in the presence of spin transfer torques. Since the spin transfer torque can pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill-defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In the limit of high energy barriers, the law of thermal agitation is derived. We find that the N\'{e}el-Brown relaxation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent of the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support our theory. Our results agree with existing experimental data.Comment: 5 figure
    • …
    corecore