1,490 research outputs found
Bending-wave Instability of a Vortex Ring in a Trapped Bose-Einstein Condensate
Based on a velocity formula derived by matched asymptotic expansion, we
investigate the dynamics of a circular vortex ring in an axisymmetric
Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an
axisymmetrically placed and oriented vortex ring is entirely determined,
revealing that the vortex ring generally precesses in condensate. The linear
instability due to bending waves is investigated both numerically and
analytically. General stability boundaries for various perturbed wavenumbers
are computed. In particular, the excitation spectrum and the absolutely stable
region for the static ring are analytically determined.Comment: 4 pages, 4 figure
Turbulence generation in homogeneous particle-laden flows
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76730/1/AIAA-1998-240-706.pd
Selective interlayer ferromagnetic coupling between the Cu spins in YBa Cu O grown on top of La Ca MnO
Studies to date on ferromagnet/d-wave superconductor heterostructures focus
mainly on the effects at or near the interfaces while the response of bulk
properties to heterostructuring is overlooked. Here we use resonant soft x-ray
scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between
the in-plane Cu spins in YBa Cu O (YBCO) superconductor when it
is grown on top of ferromagnetic La Ca MnO (LCMO) manganite
layer. This coupling, present in both normal and superconducting states of
YBCO, is sensitive to the interfacial termination such that it is only observed
in bilayers with MnO_2but not with La Ca interfacial
termination. Such contrasting behaviors, we propose, are due to distinct
energetic of CuO chain and CuO plane at the La Ca and
MnO terminated interfaces respectively, therefore influencing the transfer
of spin-polarized electrons from manganite to cuprate differently. Our findings
suggest that the superconducting/ferromagnetic bilayers with proper interfacial
engineering can be good candidates for searching the theorized
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the
competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different
from the published versio
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
Transcritical flow of a stratified fluid past a broad localised topographic
obstacle is studied analytically in the framework of the forced extended
Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible
signs for the cubic nonlinear term in the Gardner equation corresponding to
different fluid density stratification profiles. We identify the range of the
input parameters: the oncoming flow speed (the Froude number) and the
topographic amplitude, for which the obstacle supports a stationary localised
hydraulic transition from the subcritical flow upstream to the supercritical
flow downstream. Such a localised transcritical flow is resolved back into the
equilibrium flow state away from the obstacle with the aid of unsteady coherent
nonlinear wave structures propagating upstream and downstream. Along with the
regular, cnoidal undular bores occurring in the analogous problem for the
single-layer flow modeled by the forced KdV equation, the transcritical
internal wave flows support a diverse family of upstream and downstream wave
structures, including solibores, rarefaction waves, reversed and trigonometric
undular bores, which we describe using the recent development of the nonlinear
modulation theory for the (unforced) Gardner equation. The predictions of the
developed analytic construction are confirmed by direct numerical simulations
of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure
Speeding up Simplification of Polygonal Curves using Nested Approximations
We develop a multiresolution approach to the problem of polygonal curve
approximation. We show theoretically and experimentally that, if the
simplification algorithm A used between any two successive levels of resolution
satisfies some conditions, the multiresolution algorithm MR will have a
complexity lower than the complexity of A. In particular, we show that if A has
a O(N2/K) complexity (the complexity of a reduced search dynamic solution
approach), where N and K are respectively the initial and the final number of
segments, the complexity of MR is in O(N).We experimentally compare the
outcomes of MR with those of the optimal "full search" dynamic programming
solution and of classical merge and split approaches. The experimental
evaluations confirm the theoretical derivations and show that the proposed
approach evaluated on 2D coastal maps either shows a lower complexity or
provides polygonal approximations closer to the initial curves.Comment: 12 pages + figure
Wearable, Multimodal, Biosignal Acquisition System for Potential Critical and Emergency Applications
For emergency or intensive-care units (ICUs), patients with unclear consciousness or unstable hemodynamics often require aggressive monitoring by multiple monitors. Complicated pipelines or lines increase the burden on patients and inconvenience for medical personnel. Currently, many commercial devices provide related functionalities. However, most devices measure only one biological signal, which can increase the budget for users and cause difficulty in remote integration. In this study, we develop a wearable device that integrates electrocardiography (ECG), electroencephalography (EEG), and blood oxygen machines for medical applications with the hope that it can be applied in the future. We develop an integrated multiple-biosignal recording system based on a modular design. The developed system monitors and records EEG, ECG, and peripheral oxygen saturation (SpO2) signals for health purposes simultaneously in a single setting. We use a logic level converter to connect the developed EEG module (BR8), ECG module, and SpO2 module to a microcontroller (Arduino). The modular data are then smoothly encoded and decoded through consistent overhead byte stuffing (COBS). This developed system has passed simulation tests and exhibited proper functioning of all modules and subsystems. In the future, the functionalities of the proposed system can be expanded with additional modules to support various emergency or ICU applications
SkeletonVis: Interactive Visualization for Understanding Adversarial Attacks on Human Action Recognition Models
Skeleton-based human action recognition technologies are increasingly used in
video based applications, such as home robotics, healthcare on aging
population, and surveillance. However, such models are vulnerable to
adversarial attacks, raising serious concerns for their use in safety-critical
applications. To develop an effective defense against attacks, it is essential
to understand how such attacks mislead the pose detection models into making
incorrect predictions. We present SkeletonVis, the first interactive system
that visualizes how the attacks work on the models to enhance human
understanding of attacks.Comment: Accepted at AAAI'21 Dem
Targeting the ALS/FTD-associated A-DNA kink with anthracene-based metal complex causes DNA backbone straightening and groove contraction
The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA-DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA-DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a 'hot-spot' for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA
Spectral Statistics of Erd{\H o}s-R\'enyi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues
We consider the ensemble of adjacency matrices of Erd{\H o}s-R\'enyi random
graphs, i.e.\ graphs on vertices where every edge is chosen independently
and with probability . We rescale the matrix so that its bulk
eigenvalues are of order one. Under the assumption , we prove
the universality of eigenvalue distributions both in the bulk and at the edge
of the spectrum. More precisely, we prove (1) that the eigenvalue spacing of
the Erd{\H o}s-R\'enyi graph in the bulk of the spectrum has the same
distribution as that of the Gaussian orthogonal ensemble; and (2) that the
second largest eigenvalue of the Erd{\H o}s-R\'enyi graph has the same
distribution as the largest eigenvalue of the Gaussian orthogonal ensemble. As
an application of our method, we prove the bulk universality of generalized
Wigner matrices under the assumption that the matrix entries have at least moments
- …