4,263 research outputs found

    Detecting a rotation in the epsilon Eridani debris disc

    Full text link
    The evidence for a rotation of the epsilon Eridani debris disc is examined. Data at 850 micron wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods in 1997-1998 and 2000-2002. By chi-square fitting after shift and rotation operations, images from these two epochs were compared to recover proper motion and orbital motion of the disc. The same procedures were then performed on simulated images to estimate the accuracy of the results. Minima in the chi-square plots indicate a motion of the disc of approximately 0.6'' per year in the direction of the star's proper motion. This underestimates the true value of 1'' per year, implying that some of the structure in the disc region is not associated with epsilon Eridani, originating instead from background galaxies. From the chi-square fitting for orbital motion, a counterclockwise rotation rate of ~2.75 degrees per year is deduced. Comparisons with simulated data in which the disc is not rotating show that noise and background galaxies result in approximately Gaussian fluctuations with a standard deviation +/-1.5 degrees per year. Thus counterclockwise rotation of disc features is supported at approximately a 2-sigma level, after a 4-year time difference. This rate is faster than the Keplerian rate of 0.65 degrees per year for features at ~65 AU from the star, suggesting their motion is tracking a planet inside the dust ring. Future observations with SCUBA-2 can rule out no rotation of the epsilon Eridani dust clumps with ~4-sigma confidence. Assuming a rate of about 2.75 degrees per year, the rotation of the features after a 10-year period could be shown to be >1 degree per year at the 3-sigma level.Comment: 8 pages, 6 figure

    Triple trouble for XZ Tau : deep imaging with the Jansky Very Large Array

    Get PDF
    DF gratefully acknowledges support from STFC grant ST/J001422/1. RJI acknowledges support in the form of ERC Advanced Investigator programme, cosmicism. EI acknowledges funding from CONICYT/FONDECYT postdoctoral project no.: 3130504.We present new observations of the XZ Tau system made at high angular resolution (55 mas) with the Karl G. Jansky Very Large Array (VLA) at a wavelength of 7 mm. Observations of XZ Tau made with the VLA in 2004 appeared to show a triple-star system, with XZ Tau A resolved into two sources, XZ Tau A and XZ Tau C. The angular separation of XZ Tau A and C (0.09 arcsec) suggested a projected orbital separation of around 13 au with a possible orbital period of around 40 yr. Our follow-up observations were obtained approximately 8 yr later, a fifth of this putative orbital period, and should therefore allow us to constrain the orbital parameters of XZ Tau C, and evaluate the possibility that a recent periastron passage of C coincided with the launch of extended optical outflows from XZ Tau A. Despite improved sensitivity and resolution, as compared with the 2004 observations, we find no evidence of XZ Tau C in our data. Components A and B are detected with a signal-to-noise ratio greater than 10; their orbital motions are consistent with previous studies of the system, although the emission from XZ Tau A appears to be weaker. Three possible interpretations are offered: either XZ Tau C is transiting XZ Tau A, which is broadly consistent with the periastron passage hypothesis, or the emission seen in 2004 was that of a transient, or XZ Tau C does not exist. A fourth interpretation, that XZ Tau C was ejected from the system, is dismissed due to the lack of angular momentum redistribution in the orbits of XZ Tau A and XZ Tau B that would result from such an event. Transients are rare but cannot be ruled out in a T Tauri system known to exhibit variable behaviour. Our observations are insufficient to distinguish between the remaining possibilities, at least not until we obtain further VLA observations at a sufficiently later time. A further non-detection would allow us to reject the transit hypothesis, and the periastron passage of XZ Tau C as agent of XZ Tau A's outflows.Publisher PDFPeer reviewe

    Co-located wave and offshore wind farms: A preliminary approach to the shadow effect

    Get PDF
    In recent years, with the consolidation of offshore wind technology and the progress carried out for wave energy technology, the option of combine both technologies has arisen. This combination rest mainly in two main reasons: in one hand, to increase the sustainability of both energies by means of a more rational harnessing of the natural resources; in the other hand, to reduce the costs of both technologies by sharing some of the most important costs of an offshore project. In addition to these two powerful reasons there are a number of technology synergies between wave and wind systems which makes their combination even more suitable. Co-located projects are one of the alternatives to combine wave-wind systems, and it is specially for these project were so-called shadow effect synergy becomes meaningful. In particular, this paper deals with the co-location of Wave Energy Conversion (WEC) technologies into a conventional offshore wind farm. More specifically, an overtopping type of WEC technology was considered in this work to study the effects of its co-location with a conventional offshore wind park. This study aims to give a preliminary approach to the shadow effect and its implications for both wave and offshore wind energies

    CO-LOCATED WAVE AND OFFSHORE WIND FARMS: A PRELIMINARY CASE STUDY OF AN HYBRID ARRAY

    Get PDF
    In recent years, with the consolidation of offshore wind technology and the progress carried out for wave energy technology, the option of co-locate both technologies at the same marine area has arisen. Co-located projects are a combined solution to tackle the shared challenge of reducing technology costs or a more sustainable use of the natural resources. In particular, this paper deals with the co-location of Wave Energy Conversion (WEC) technologies into a conventional offshore wind farm. More specifically, an overtopping type of WEC technology was considered in this work to study the effects of its co-location with a conventional offshore wind park

    ALMA and Herschel Observations of the Prototype Dusty and Polluted White Dwarf G29-38

    Get PDF
    ALMA Cycle 0 and Herschel PACS observations are reported for the prototype, nearest, and brightest example of a dusty and polluted white dwarf, G29-38. These long wavelength programs attempted to detect an outlying, parent population of bodies at 1-100 AU, from which originates the disrupted planetesimal debris that is observed within 0.01 AU and which exhibits L_IR/L = 0.039. No associated emission sources were detected in any of the data down to L_IR/L ~ 1e-4, generally ruling out cold dust masses greater than 1e24 - 1e25 g for reasonable grain sizes and properties in orbital regions corresponding to evolved versions of both asteroid and Kuiper belt analogs. Overall, these null detections are consistent with models of long-term collisional evolution in planetesimal disks, and the source regions for the disrupted parent bodies at stars like G29-38 may only be salient in exceptional circumstances, such as a recent instability. A larger sample of polluted white dwarfs, targeted with the full ALMA array, has the potential to unambiguously identify the parent source(s) of their planetary debris.Comment: 8 pages, 5 figures and 1 table. Accepted to MNRA
    corecore