32,812 research outputs found

    Reactions to Skill Assessment: The Forgotten Factor in Explaining Motivation to Learn

    Get PDF
    This study examined the effects of trainees’ reactions to skill assessment on their motivation to learn. A model was developed that suggests that two dimensions of trainees’ assessment reactions – distributive justice and utility – influence training motivation and overall training effectiveness. The model was tested using a sample of individuals (N = 113) enrolled in a truck driving training program. Results revealed that trainees’ who perceived higher levels of distributive justice and utility had higher motivation to learn. Training motivation was found to significantly predict several measures of training effectiveness. Trainees’ performance on the pre-training assessment and trait goal orientation exhibited direct and interactive effects on their reactions to the skill assessment. Implications of these findings for future research on reactions to skill assessments are identified along with the practical implications for the design and conduct of training needs assessment

    Bounds on negative energy densities in flat spacetime

    Get PDF
    We generalise results of Ford and Roman which place lower bounds -- known as quantum inequalities -- on the renormalised energy density of a quantum field averaged against a choice of sampling function. Ford and Roman derived their results for a specific non-compactly supported sampling function; here we use a different argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions which are either compactly supported or decay rapidly at infinity. Our results hold in dd-dimensional Minkowski space (d≥2d\ge 2) for the free real scalar field of mass m≥0m\ge 0. We discuss various features of our bounds in 2 and 4 dimensions. In particular, for massless field theory in 2-dimensional Minkowski space, we show that our quantum inequality is weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference adde

    Lightcone fluctuations in flat spacetimes with nontrivial topology

    Get PDF
    The quantum lightcone fluctuations in flat spacetimes with compactified spatial dimensions or with boundaries are examined. The discussion is based upon a model in which the source of the underlying metric fluctuations is taken to be quantized linear perturbations of the gravitational field. General expressions are derived, in the transverse trace-free gauge, for the summation of graviton polarization tensors, and for vacuum graviton two-point functions. Because of the fluctuating light cone, the flight time of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime. We calculate the mean deviations from the classical propagation time of photons due to the changes in the topology of the flat spacetime. These deviations are in general larger in the directions in which topology changes occur and are typically of the order of the Planck time, but they can get larger as the travel distance increases.Comment: 25 pages, 5 figures, some discussions added and a few typos corrected, final version to appear in Phys. Rev.

    Neutrinoless Double Beta Decay with SNO+

    Get PDF
    SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6% abundance and allow the experiment to reach a sensitivity to the effective neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of the scintillator. Distillation and several other purification techniques will be used with the aim of achieving Borexino levels of backgrounds. The experiment is fully funded and data taking with light-water will commence in 2012 with scintillator data following in 2013.Comment: 4 pages, 2 figures, prepared for TAUP 201

    Metals plated on fluorocarbon polymers

    Get PDF
    Electroplating lead on fluorocarbon polymer parts is accomplished by etching the parts to be plated with sodium, followed by successive depositions of silver and lead from ultrasonically agitated plating solutions. Metals other than lead may be electroplated on the silvered parts

    A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime

    Full text link
    Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. The non-optimal bound thereby obtained has the same order of magnitude, in the limit of zero mass, as the optimal bound of Vollick. In contrast with Vollick's bound, the bound presented here holds for all (non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur

    Quantum energy inequalities in two dimensions

    Full text link
    Quantum energy inequalities (QEIs) were established by Flanagan for the massless scalar field on two-dimensional Lorentzian spacetimes globally conformal to Minkowski space. We extend his result to all two-dimensional globally hyperbolic Lorentzian spacetimes and use it to show that flat spacetime QEIs give a good approximation to the curved spacetime results on sampling timescales short in comparison with natural geometric scales. This is relevant to the application of QEIs to constrain exotic spacetime metrics.Comment: 4 pages, REVTeX. This is an expanded version of a portion of gr-qc/0409043. To appear in Phys Rev

    Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak

    Get PDF
    Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved

    The Effects of Stress Tensor Fluctuations upon Focusing

    Full text link
    We treat the gravitational effects of quantum stress tensor fluctuations. An operational approach is adopted in which these fluctuations produce fluctuations in the focusing of a bundle of geodesics. This can be calculated explicitly using the Raychaudhuri equation as a Langevin equation. The physical manifestation of these fluctuations are angular blurring and luminosity fluctuations of the images of distant sources. We give explicit results for the case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices B and

    Dynamic wormholes

    Full text link
    A new framework is proposed for general dynamic wormholes, unifying them with black holes. Both are generically defined locally by outer trapping horizons, temporal for wormholes and spatial or null for black and white holes. Thus wormhole horizons are two-way traversible, while black-hole and white-hole horizons are only one-way traversible. It follows from the Einstein equation that the null energy condition is violated everywhere on a generic wormhole horizon. It is suggested that quantum inequalities constraining negative energy break down at such horizons. Wormhole dynamics can be developed as for black-hole dynamics, including a reversed second law and a first law involving a definition of wormhole surface gravity. Since the causal nature of a horizon can change, being spatial under positive energy and temporal under sufficient negative energy, black holes and wormholes are interconvertible. In particular, if a wormhole's negative-energy source fails, it may collapse into a black hole. Conversely, irradiating a black-hole horizon with negative energy could convert it into a wormhole horizon. This also suggests a possible final state of black-hole evaporation: a stationary wormhole. The new framework allows a fully dynamical description of the operation of a wormhole for practical transport, including the back-reaction of the transported matter on the wormhole. As an example of a matter model, a Klein-Gordon field with negative gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach publisher
    • …
    corecore