83 research outputs found

    Current evolution of meteoroids

    Get PDF
    The observed mass distribution of meteoroids at 1 AU from the sun is briefly reviewed in a survey that ranges over the bulk of the mass spectrum from micrometeoroids to meteorite parent objects. The evolution of meteoroids under the influence of collisions, planetary perturbations, the Poynting-Robertson effect and radiation pressure is then discussed. Most micrometeoroids are expelled from the solar system by radiation pressure shortly after their production as secondary ejecta during impact by larger objects or as dust ejected by comets. Particles that survive will eventually be swept out by the Poynting-Robertson effect. Meteoroids in the radio and photographic ranges are destroyed in collisions faster than they can be replaced by the production of secondary fragments during collisions between larger objects

    The lunar micrometeoroid experiment, L033

    Get PDF
    Use of Pioneer 7 and 8 cosmic dust detectors in Apollo 17 lunar ejecta and micrometeorite experiment to measure meteoroid fluxes on moo

    On the origin and distribution of meteoroids

    Get PDF
    Influence of collisional and radiative processes on population of sporadic and shower meteoroid

    A description of hypersonic laminar heat transfer at the stagnation point of a blunt body - case 110

    Get PDF
    Stagnation point convective heat transfer for blunt body moving at hypersonic spee

    Mass distribution of asteroids

    Get PDF
    Approximate solution for large asteroid distribution with masses near limiting largest mass of populatio

    Collisional model of asteroids and their debris

    Get PDF
    Collisional model of asteroids and their debri

    Keck Pencil-Beam Survey for Faint Kuiper Belt Objects

    Get PDF
    We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. A single 0.01 square degree field is imaged 29 times for a total integration time of 4.8 hr. Combining exposures in software allows the detection of Kuiper Belt Objects (KBOs) having visual magnitude V < 27.9. Two new KBOs are discovered. One object having V = 25.5 lies at a probable heliocentric distance d = 33 AU. The second object at V = 27.2 is located at d = 44 AU. Both KBOs have diameters of about 50 km, assuming comet-like albedos of 4%. Data from all surveys are pooled to construct the luminosity function from red magnitude R = 20 to 27. The cumulative number of objects per square degree, N (< R), is fitted to a power law of the form log_(10) N = 0.52 (R - 23.5). Differences between power laws reported in the literature are due mainly to which survey data are incorporated, and not to the method of fitting. The luminosity function is consistent with a power-law size distribution for objects having diameters s = 50 to 500 km; dn ~ s^(-q) ds, where the differential size index q = 3.6 +/- 0.1. The distribution is such that the smallest objects possess most of the surface area, but the largest bodies contain the bulk of the mass. Though our inferred size index nearly matches that derived by Dohnanyi (1969), it is unknown whether catastrophic collisions are responsible for shaping the size distribution. Implications of the absence of detections of classical KBOs beyond 50 AU are discussed.Comment: Accepted to AJ. Final proof-edited version: references added, discussion of G98 revised in sections 4.3 and 5.

    The Size Distribution of Kuiper Belt Objects

    Full text link
    We describe analytical and numerical collisional evolution calculations for the size distribution of icy bodies in the Kuiper Belt. For a wide range of bulk properties, initial masses, and orbital parameters, our results yield power-law cumulative size distributions, N_C propto r^{-q}, with q_L = 3.5 for large bodies with radii of 10-100 km, and q_s = 2.5-3 for small bodies with radii lesss than 0.1-1 km. The transition between the two power laws occurs at a break radius of 1-30 km. The break radius is more sensitive to the initial mass in the Kuiper Belt and the amount of stirring by Neptune than the bulk properties of individual Kuiper Belt objects (KBOs). Comparisons with observations indicate that most models can explain the observed sky surface density of KBOs for red magnitudes, R = 22-27. For R 28, the model surface density is sensitive to the amount of stirring by Neptune, suggesting that the size distribution of icy planets in the outer solar system provides independent constraints on the formation of Neptune.Comment: 24 pages of text, 12 figures; to appear in the Astronomical Journal, October 200

    IR Kuiper Belt Constraints

    Get PDF
    We compute the temperature and IR signal of particles of radius aa and albedo α\alpha at heliocentric distance RR, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, RR, particle radius, aa, and particle albedo, α\alpha. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.Comment: 34 pages, LaTeX, uses aasms4.sty, 11 PostScript figures not embedded. A number of substantive comments by a particularly thoughtful referee have been addresse

    A Ring of Warm Dust in the HD 32297 Debris Disk

    Full text link
    We report the detection of a ring of warm dust in the edge-on disk surrounding HD 32297 with the Gemini-N/MICHELLE mid-infrared imager. Our N'-band image shows elongated structure consistent with the orientation of the scattered-light disk. The Fnu(11.2 um) = 49.9+/-2.1 mJy flux is significantly above the 28.2+/-0.6 mJy photosphere. Subtraction of the stellar point spread function reveals a bilobed structure with peaks 0.5"-0.6" from the star. An analysis of the stellar component of the SED suggests a spectral type later than A0, in contrast to commonly cited literature values. We fit three-dimensional, single-size grain models of an optically thin dust ring to our image and the SED using a Markov chain Monte Carlo algorithm in a Bayesian framework. The best-fit effective grain sizes are submicron, suggesting the same dust population is responsible for the bulk of the scattered light. The inner boundary of the warm dust is located 0.5"-0.7" (~65 AU) from the star, which is approximately cospatial with the outer boundary of the scattered-light asymmetry inward of 0.5". The addition of a separate component of larger, cooler grains that provide a portion of the 60 um flux improves both the fidelity of the model fit and consistency with the slopes of the scattered-light brightness profiles. Previous indirect estimates of the stellar age (~30 Myr) indicate the dust is composed of debris. The peak vertical optical depths in our models (~0.3-1 x 1e-2) imply that grain-grain collisions likely play a significant role in dust dynamics and evolution. Submicron grains can survive radiation pressure blow-out if they are icy and porous. Similarly, the inferred warm temperatures (130-200 K) suggest that ice sublimation may play a role in truncating the inner disk.Comment: ApJ accepted, 8 pages, 4 figure
    corecore