63 research outputs found

    Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing

    Get PDF
    With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics

    Development and function of diabetogenic T-cells in B-cell-deficient nonobese diabetic mice.

    No full text
    Insulin-dependent diabetes (type 1 diabetes) in the NOD mouse is a T-cell-mediated autoimmune disease. However, B-cells may also play a critical role in disease pathogenesis, as genetically B-cell-deficient NOD mice (NOD.microMT) have been shown to be protected from type 1 diabetes and to display reduced responses to certain islet autoantigens. To examine the requirements for B-cells in the development of type 1 diabetes, we generated a B-cell-naive T-cell repertoire by transplantation of NOD fetal thymuses (FTs) into NOD.scid recipients. Surprisingly, these FT-derived NOD T-cells were diabetogenic in 36% of NOD.scid recipients, despite the absence of B-cells. In addition, T-cells isolated from NOD.microMT mice were diabetogenic in 22% of NOD.scid recipients. Together, these results indicate that B-cells are not an absolute requirement for the generation or effector function of an islet-reactive T-cell repertoire in NOD mice. We suggest that conditions favoring rapid lymphocyte expansion can reveal autoreactive T-cell activity and precipitate disease in genetically susceptible individuals
    • …
    corecore