144 research outputs found
Charge dynamics in two-electron quantum dots
We investigate charge dynamics in a two-electron double quantum dot. The
quantum dot is manipulated by using a time-dependent external voltage that
induces charge oscillations between the dots. We study the dependence of the
charge dynamics on the external magnetic field and on the periodicity of the
external potential. We find that for suitable parameter values, it is possible
to induce both one-electron and two-electron oscillations between the dots.Comment: 4 pages, 7 figures, proceedings of the Quantum Dot 2010 conferenc
Early oxygen levels contribute to brain injury in extremely preterm infants
Background Extremely low gestational age newborns (ELGANs) are at risk of neurodevelopmental impairments that may originate in early NICU care. We hypothesized that early oxygen saturations (SpO(2)), arterial pO(2) levels, and supplemental oxygen (FiO(2)) would associate with later neuroanatomic changes. Methods SpO(2), arterial blood gases, and FiO(2) from 73 ELGANs (GA 26.4 +/- 1.2; BW 867 +/- 179 g) during the first 3 postnatal days were correlated with later white matter injury (WM, MRI, n = 69), secondary cortical somatosensory processing in magnetoencephalography (MEG-SII, n = 39), Hempel neurological examination (n = 66), and developmental quotients of Griffiths Mental Developmental Scales (GMDS, n = 58). Results The ELGANs with later WM abnormalities exhibited lower SpO(2) and pO(2) levels, and higher FiO(2) need during the first 3 days than those with normal WM. They also had higher pCO(2) values. The infants with abnormal MEG-SII showed opposite findings, i.e., displayed higher SpO(2) and pO(2) levels and lower FiO(2) need, than those with better outcomes. Severe WM changes and abnormal MEG-SII were correlated with adverse neurodevelopment. Conclusions Low oxygen levels and high FiO(2) need during the NICU care associate with WM abnormalities, whereas higher oxygen levels correlate with abnormal MEG-SII. The results may indicate certain brain structures being more vulnerable to hypoxia and others to hyperoxia, thus emphasizing the role of strict saturation targets. Impact This study indicates that both abnormally low and high oxygen levels during early NICU care are harmful for later neurodevelopmental outcomes in preterm neonates. Specific brain structures seem to be vulnerable to low and others to high oxygen levels. The findings may have clinical implications as oxygen is one of the most common therapies given in NICUs. The results emphasize the role of strict saturation targets during the early postnatal period in preterm infants.Peer reviewe
Assessing the opportunities of landfill mining as a source of critical raw materials in Europe
Many of the metals in landfill constitute valuable and scarce natural resources. It
has already been recognised that the recovery of these elements is critical for the sustainability
of a number of industries. Arsenic (which is an essential part of the production of transistors and
LEDs) is predicted to run out sometime in the next five to 50 years if consumption continues at
the present rate. Nickel used for anything involving stainless steel and platinum group metals
(PGMs) used in catalytic converters, fertilisers and others are also identified as critical materials
(CM) to the EU economy at risk of depletion However, despite the increasing demand, none of
this supply is supported by recycling. This is due to the high cost of recovery from low
concentrations when compared to conventional mining. As demonstrated by the two pilot case
studies of this study, mining landfill sites only for their metals content is not expected to be
financially viable. However, other opportunities such as Waste-derived fuels from excavated
materials exist which if combined , form the concept of ‘enhanced landfill mining’. have the
potential to be highly energetic. The energy potential is comparable to the levels of energy of
Refuse-Derived Fuels (RDF) produced from non-landfilled wastes
Coherent control of three-spin states in a triple quantum dot
Spin qubits involving individual spins in single quantum dots or coupled
spins in double quantum dots have emerged as potential building blocks for
quantum information processing applications. It has been suggested that triple
quantum dots may provide additional tools and functionalities. These include
the encoding of information to either obtain protection from decoherence or to
permit all-electrical operation, efficient spin busing across a quantum
circuit, and to enable quantum error correction utilizing the three-spin
Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate
for the first time coherent manipulation between two interacting three-spin
states. We employ the Landau-Zener-St\"uckelberg approach for creating and
manipulating coherent superpositions of quantum states. We confirm that we are
able to maintain coherence when decreasing the exchange coupling of one spin
with another while simultaneously increasing its coupling with the third. Such
control of pairwise exchange is a requirement of most spin qubit architectures
but has not been previously demonstrated.Comment: 12 pages, 13 figures, and 2 table
ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.
The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.
This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.
The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.
Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations
- …