1,399 research outputs found

    Multivariable control theory applied to hierarchial attitude control for planetary spacecraft

    Get PDF
    Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included

    Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    Get PDF
    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments

    Analysis of intrapulse chirp in CO2 oscillators

    Get PDF
    Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed

    An interim reference model for the variability of the middle atmosphere H2O vapor distribution

    Get PDF
    Water vapor is an important minor constituent in the studies of the middle atmosphere for a variety of reasons, including its role as a source for active HO(y) chemicals and its use in analysis of transport processes. A number of in situ and remote techniques were employed in the determination of water vapor distributions. Two of the more complete data sets were used to develop an interim reference profile. First, there are the seven months of Nimbus 7 limb infrared monitor of the stratosphere (LIMS) data obtained during Nov. 1978 to May 1979 over the range 64S to 84N latitude and from about 100 to 1 mb in the mid-mesosphere at several fixed Northern Hemisphere mid-latitude sites. These two data sets were combined to give a mid-lattitude, interim reference water vapor profile for the entire vertical range of the middle atmosphere and with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean was also established from these data sets for selected months. Information is also provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means. Generally, the interim reference water vapor profile and its variability are consistent with prevailing ideas about chemistry and transport

    ATMOS Spacelab 1 science investigation

    Get PDF
    Existing infrared spectra from high speed interferometer balloon flights were analyzed and experimental analysis techniques applicable to similar data from the ATMOS experiment (Spacelab 3) were investigated. Specific techniques under investigation included line-by-line simulation of the spectra to aid in the identification of absorbing gases, simultaneous retrieval of pressure and temperature profiles using carefully chosen pairs of CO2 absorption lines, and the use of these pressures and temperatures in the retrieval of gas concentration profiles for many absorbing species. A search for a new absorption features was also carried out, and special attention was given to identification of absorbing gases in spectral bandpass regions to be measured by the halogen occultation experiment

    Spectroscopic requirements for HALOE: An analysis of the HCl and HF channels

    Get PDF
    Spectral line parameters that have absorption features within the HCl and HF channels of the Halogen Occultation Experiment (HALOE) were evaluated. Line positions and identification of stratospheric and solar absorption features in both channels are presented based on an analysis of high-resolution, balloon-borne solar occultation spectra. For the relevant HCl and HF lines and for transitions of the interfering species, the accuracy of the following spectral parameters was assessed: line positions, line strengths, lower state energies, air-broadened collisional half-widths, and temperature dependence of the air-broadened half-widths. In addition, since the HALOE instrument and calibration cells are filled with mixtures of HCl in N2 and HF in N2, the self-broadened and N2-broadened HF and HCl half-widths were also considered

    Working Out the Kinks: Creating Solutions to Assist Health Care Workers to Take Vital Signs Through Effective Cable Management

    Get PDF
    EPICS (Engineering Projects in Community Service) is a service-learning design program run through Purdue University. It strives to teach students design skills through providing solutions for individuals, communities, and organizations in the surrounding area while mirroring engineering industry standards. BME (Bio-medical Engineering) is a team within EPICS that strives to serve community partners through biomedical applications. Members of a health care team often spend valuable time organizing cables associated with machines used to take patients’ vital signs. Due to time constraints and the fast-paced work environment, these cables may be mismanaged and damaged. The BME team is working on a solution to ensure that relevant cords will be easily managed, damage will be minimized, and most importantly, health care professionals’ time will be saved

    Chemical ozone loss in the Arctic winter 1991–1992

    Get PDF
    Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, Version 19, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where the measurements are most likely disturbed by the enhanced sulfate aerosol loading, as a result of the Mt.~Pinatubo eruption in June 1991. Significant chemical ozone loss (13–17 DU) is observed below 380 K from Kiruna balloon observations and HALOE satellite data between December 1991 and March 1992. For the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss towards lower altitudes compared to other Arctic winters between 1991 and 2003. In spite of already occurring deactivation of chlorine in March 1992, MIPAS-B and LPMA balloon observations indicate that chlorine was still activated at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Large chemical ozone loss of more than 70 DU in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here

    Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    Get PDF
    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval

    Observation of semiannual and annual oscillation in equatorial middle atmospheric long term temperature pattern

    Get PDF
    Extensive measurement of middle atmospheric temperature with the help of lidar data of more than 10 years (1998–2008) and TIMED/SABER data of 7 years (2002–2008), has been carried out from a low latitude station, Gadanki, India (13.5° N, 79.2° E), which exhibits the presence of semiannual oscillation (SAO) and annual oscillation (AnO). The AnO component is stronger in the mesospheric region (80–90 km) and the SAO is dominant at stratospheric altitudes (30–50 km). Overall, the AnO possesses higher amplitude ~6–7 K, and the SAO shows less amplitude ~1–2 K. The AnO present at 90 km finds crest near summer solstice, and the same at 80 km shows peak near winter solstice with a downward progression speed ~1.7 km/month. The SAO propagates downward with an average phase speed ~9 km/month and phase maximizes around equinox and solstice at 50 and 30 km, respectively. The observed SAO has also shown seasonal asymmetry in peaks
    corecore