9 research outputs found

    Physical activity is reduced prior to ventricular arrhythmiasin patients with a wearable cardioverter defibrillator

    Get PDF
    The utility of accelerometer�based activity data to identify patients at risk of sustained ventricular tachycardia (VT) or ventricular fibrillation (VF) has not previously been investigated. The aim of the current study was to determine whether physical activity is associated with manifesting spontaneous sustained VT/VF requiring emergent defibrillation in patients with an ejection fraction of ≤35%

    Randomized Trial of Pacemaker and Lead System for Safe Scanning at 1.5 Tesla

    Get PDF
    BackgroundMagnetic resonance imaging (MRI) of pacemakers is a relative contraindication because of the risks to the patient from potentially hazardous interactions between the MRI and the pacemaker system. Chest scans (ie, cardiac magnetic resonance scans) are of particular importance and higher risk. The previously Food and Drug Administration-approved magnetic resonance conditional system includes positioning restrictions, limiting the powerful utility of MRI.ObjectiveTo confirm the safety and effectiveness of a pacemaker system designed for safe whole body MRI without MRI scan positioning restrictions.MethodsPrimary eligibility criteria included standard dual-chamber pacing indications. Patients (n = 263) were randomized in a 2:1 ratio to undergo 16 chest and head scans at 1.5 T between 9 and 12 weeks postimplant (n = 177) or to not undergo MRI (n = 86) post-implant. Evaluation of the pacemaker system occurred immediately before, during (monitoring), and after MRI, 1-week post-MRI, and 1-month post-MRI, and similarly for controls. Primary end points measured the MRI-related complication-free rate for safety and compared pacing capture threshold between MRI and control subjects for effectiveness.ResultsThere were no MRI-related complications during or after MRI in subjects undergoing MRI (n = 148). Differences in pacing capture threshold values from pre-MRI to 1-month post-MRI were minimal and similar between the MRI and control groups.ConclusionsThis randomized trial demonstrates that the Advisa MRI pulse generator and CapSureFix MRI 5086MRI lead system is safe and effective in the 1.5 T MRI environment without positioning restrictions for MRI scans or limitations of body parts scanned

    ACR guidance document on MR safe practices: 2013

    Full text link
    Because there are many potential risks in the MR environment and reports of adverse incidents involving patients, equipment and personnel, the need for a guidance document on MR safe practices emerged. Initially published in 2002, the ACR MR Safe Practices Guidelines established de facto industry standards for safe and responsible practices in clinical and research MR environments. As the MR industry changes the document is reviewed, modified and updated. The most recent version will reflect these changes. J. Magn. Reson. Imaging 2013;37:501–530. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96674/1/24011_ftp.pd

    TO THE EDITOR

    No full text

    Physical activity is reduced prior to ventricular arrhythmiasin patients with a wearable cardioverter defibrillator

    No full text
    The utility of accelerometer-based activity data to identify patients at risk of sustained ventricular tachycardia (VT) or ventricular fibrillation (VF) has not previously been investigated. The aim of the current study was to determine whether physical activity is associated with manifesting spontaneous sustained VT/VF requiring emergent defibrillation in patients with an ejection fraction of ≤35%

    The development of the extravascular defibrillator with substernal lead placement: A new Frontier for device-based treatment of sudden cardiac arrest

    No full text
    Introduction: The extravascular implantable cardioverter-defibrillato (EV ICD) system with substernal lead placement is a novel nontransvenous alternative to current commercially available ICD systems. The EV ICD provides defibrillation and pacing therapies without the potential long-term complications of endovascular lead placement but requires a new procedure for implantation with a safety profile under evaluation. Methods: This paper summarizes the development of the EV ICD, including the preclinical and clinical evaluations that have contributed to the system and procedural refinements to date. Results: Extensive preclinical research evaluations and four human clinical studies with >140 combined acute and chronic implants have enabled the development and refinement of the EV ICD system, currently in worldwide pivotal study. Conclusion: The EV ICD may represent a clinically valuable solution in protecting patients from sudden cardiac death while avoiding the long-term consequences of transvenous hardware. The EV ICD offers advantages over transvenous and subcutaneous systems by avoiding placement in the heart and vasculature; relative to subcutaneous systems, EV ICD requires less energy for defibrillation, enabling a smaller device, and provides pacing features such as antitachycardia and asystole pacing in a single system
    corecore