79 research outputs found

    The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid Badlands area (Central Spanish Pyrenees)

    Get PDF
    Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile metres (invasive techniques). In recent times, remote-sensing techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques provide the opportunity to build high-resolution topographic models at centimetre accuracy. By comparing different 3-D point clouds of the same area, obtained at different time intervals, the variations in the terrain and temporal dynamics can be analysed. The aim of this study is to assess and compare the functioning of terrestrial laser scanner (TLS, RIEGL LPM-321) and structure-from-motion photogrammetry (SfM) techniques (Camera FUJIFILM, Finepix x100 and software PhotoScan by AgiSoft) to evaluate erosion and deposition processes in two opposite slopes in a humid badlands area in the central Spanish Pyrenees. Results showed that TLS data sets and SfM photogrammetry techniques provide new opportunities in geomorphological erosion studies. The data we recorded over 1 year demonstrated that north-facing slopes experienced more intense and faster changing geomorphological dynamics than south-facing slopes as well as the highest erosion rates. Different seasonal processes were observed, with the highest topographic differences observed during winter periods and the high-intensity rainfalls in summer. While TLS provided the highest accuracy models, SfM photogrammetry was still a faster methodology in the field and precise at short distances. Both techniques present advantages and disadvantages, and do not require direct contact with the soil and thus prevent the usual surface disturbance of traditional and invasive methods

    ECTACI: European Climatology and Trend Atlas of Climate Indices (1979–2017)

    Get PDF
    A fundamental key to understanding climate change and its implications is the availability of databases with wide spatial coverage, over a long period of time, with constant updates and high spatial resolution. This study describes a newly gridded data set and its map viewer “European Climatology and Trend Atlas of Climate Indices” (ECTACI), which contains four statistical parameters (climatology, coefficient of variation, slope, and significant trend) from 125 standard climate indices for the whole Europe at 0.25° grid intervals from 1979 to 2017 at various temporal scales (monthly, seasonal, and annual). In addition, this study shows, for the first time, the general trends of a wide variety of updated standard climate indices at seasonal and annual scales for the whole of Europe, which could be a useful tool for climate analysis and its impact on different sectors and socioeconomic activities. The data set and ECTACI map viewer are available for free (http://ECTACI.csic.es/)

    Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent

    Get PDF
    This study analyzes spatial variability of snow depth and density from measurements made in February and April of 2010 and 2011 in three 1–2 km2 areas within a valley of the central Spanish Pyrenees. Snow density was correlated with snow depth and different terrain characteristics. Regression models were used to predict the spatial variability of snow density, and to assess how the error in computed densities might influence estimates of snow water equivalent (SWE). The variability in snow depth was much greater than that of snow density. The average snow density was much greater in April than in February. The correlations between snow depth and density were generally statistically significant but typically not very high, and their magnitudes and signs were highly variable among sites and surveys. The correlation with other topographic variables showed the same variability in magnitude and sign, and consequently the resulting regression models were very inconsistent, and in general explained little of the variance. Antecedent climatic and snow conditions prior to each survey help highlight the main causes of the contrasting relation shown between snow depth, density and terrain. As a consequence of the moderate spatial variability of snow density relative to snow depth, the absolute error in the SWE estimated from computed densities using the regression models was generally less than 15%. The error was similar to that obtained by relating snow density measurements directly to adjacent snow depths.This work was supported by research projects CGL2011-27536/HID: “Hidrologia nival en el Pirineo central español: variabilidad espacial, importancia hidrológica y su respuesta a la variabilidad y cambio climático”, financed by the Spanish Commission of Science and Technology, and FEDER; ACQWA (FP7-ENV- 2008-1-212250); the projects “La nieve en el Pirineo aragonés: Distribución especial y su respuesta a las condiciones climáticas” and “Efecto de los escenarios de cambio climático sobre la hidrología superficial y la gestión de embalses del Pirineo Aragonés”, financed by “Obra Social La Caixa”; and “Influencia del cambio climático en el turismo de nieve-CTTP1/10”, financed by the Comunidad de Trabajo de los Pirineos, CTP.Peer Reviewe

    Response of vegetation to drought time-scales across global land biomes

    Get PDF
    We evaluated the response of the Earth land biomes to drought by correlating a drought indexwith three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of thewater deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions havemechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ fromthose operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change

    Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981

    Get PDF
    This paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier in the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier''s surface area by analysis of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs) generated from topographic maps (1981 and 1999), airborne lidar (2010) and terrestrial laser scanning (TLS, 2011, 2012, 2013, and 2014) data. We interpreted the changes in the glacier based on climate data from nearby meteorological stations. The results indicate that the degradation of this glacier accelerated after 1999. The rate of ice surface loss was almost three times greater during 1999-2006 than during earlier periods. Moreover, the rate of glacier thinning was 1.85 times faster during 1999-2010 (rate of surface elevation change = -8.98 ± 1.80 m, glacier-wide mass balance = -0.73 ± 0.14 m w.e. yr-1) than during 1981-1999 (rate of surface elevation change = -8.35 ± 2.12 m, glacier-wide mass balance = -0.42 ± 0.10 m w.e. yr-1). From 2011 to 2014, ice thinning continued at a slower rate (rate of surface elevation change = -1.93 ± 0.4 m yr-1, glacier-wide mass balance = -0.58 ± 0.36 m w.e. yr-1). This deceleration in ice thinning compared to the previous 17 years can be attributed, at least in part, to two consecutive anomalously wet winters and cool summers (2012-2013 and 2013-2014), counteracted to some degree by the intense thinning that occurred during the dry and warm 2011-2012 period. However, local climatic changes observed during the study period do not seem sufficient to explain the acceleration of ice thinning of this glacier, because precipitation and air temperature did not exhibit statistically significant trends during the study period. Rather, the accelerated degradation of this glacier in recent years can be explained by a strong disequilibrium between the glacier and the current climate, and likely by other factors affecting the energy balance (e.g., increased albedo in spring) and feedback mechanisms (e.g., heat emitted from recently exposed bedrock and debris covered areas)

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Get PDF
    In mountain areas, the phenology and productivity of grassland are closely related to snow dynamics. However, the influence that snow melt timing has on grassland growing still needs further attention for a full understanding, particularly at high spatial resolution. Aiming to reduce this knowledge gap, this work exploits 1 m resolution snow depth and Normalized Difference Vegetation Index observations acquired with an Unmanned Aerial Vehicle at a sub-alpine site in the Pyrenees. During two snow seasons (2019–2020 and 2020–2021), 14 NDVI and 17 snow depth distributions were acquired over 48 ha. Despite the snow dynamics being different in the two seasons, the response of grasslands greening to snow melt-out exhibited a very similar pattern in both. The NDVI temporal evolution in areas with distinct melt-out dates reveals that sectors where the melt-out date occurs in late April or early May (optimum melt-out) reach the maximum vegetation productivity. Zones with an earlier or a later melt-out rarely reach peak NDVI values. The results obtained in this study area, suggest that knowledge about snow depth distribution is not needed to understand NDVI grassland dynamics. The analysis did not reveal a clear link between the spatial variability in snow duration and the diversity and richness of grassland communities within the study area

    Evolution and frequency (1970-2007) of combined temperature-precipitation modes in the Spanish mountains and sensitivity of snow cover

    Get PDF
    Snow cover in Spanish mountains is crucial for ensuring water availability in spring and summer months, for the success of winter tourism or for the maintenance of biodiversity in mountain ecosystems. A changing climate may affect the volume of snow cover even in high mountains, where weather conditions are usually favorable for snow accumulation. In this paper, we aim to investigate the evolution (1970-2007) of combined precipitation-temperature modes in the Spanish mountains, and the sensitivity of the snowpack to their occurrence. The climatic database "Spain02” and snow thickness data for Spanish mountains were used for this purpose. Results showed that the frequency of dry-warm and wet-warm days has increased over time in all mountain ranges, while the frequency of the "cold” modes has decreased. The thickness of the snowpack in the Pyrenees has also decreased and its evolution is negatively correlated with the frequency of dry-warm days, and positively correlated with the frequency of dry-cold and wet-cold days. This work constitutes the first approach that relates the evolution of climatic conditions favorable or unfavorable for snow accumulation and the evolution of the snowpack in Spanish mountain

    The complex influence of ENSO on droughts in Ecuador

    Get PDF
    48 Pags.- 1 Tabl.- 18 Figs. The definitive version is available at: http://link.springer.com/journal/382In this study, we analyzed the influence of El Niño–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.This work was supported by the EPhysLab (UVIGO-CSIC Associated Unit) and the research projects I-COOP H2O 2013CD0006: “Test multisectorial y actividades demostrativa sobre el potencial desarrollo de sistemas de monitorización de sequías en tiempo real en la región del oeste de Sudamérica” financed by the Spanish National Research Council, CGL2011-27574-CO2-02, CGL2014-52135-C03-01 and Red de variabilidad y cambio climático RECLIM (CGL2014-517221-REDT), financed by the Spanish Commission of Science and Technology and FEDER, and “LIFE12 ENV/ES/000536-Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)” financed by the LIFE programme of the European Commission. Cesar Azorin-Molina was supported by the JCI-2011-10263 Grant. Arturo Sanchez-Lorenzo was supported by the JCI-2012-12508 Grant. Miquel Tomas-Burguera was supported by a doctoral grant by the Ministry of Economy and Competitiveness and Natalia Martin-Hernandez was supported by a doctoral grant by the Aragón Regional Government. E. Aguilar was funded by the Grant CCI-009-ATN/OC-12439-RG-2012 from the Banco Iberoamericano de Desarrollo.Peer reviewe

    Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI

    Get PDF
    Streamflows in five Mediterranean mountain headwaters in the central Spanish Pyrenees were projected under various climate and land use change scenarios. Streamflows were simulated using the Regional Hydro-Ecologic Simulation System (RHESSys). The results show that changes in precipitation and temperature could cause a decline of annual streamflow between 13% and 23%, depending on the considered catchment. When the effect of increased forest cover in the basins is added to climate change effects, the decrease in annual streamflow is enhanced up to 19% and 32%. The largest hydrological changes resulting from environmental change are projected mainly in early spring, summer and autumn, when the decline may exceed 40%. Winter is the least affected season by environmental change because of increased runoff as a consequence of reduced storage of water in the snowpack and an earlier onset of the snowmelt, and the lower consumption of water by vegetation during the cold season. The magnitude of hydrological change as a result of the assumed environmental change scenarios may lead to serious impacts on water management and ecology of the studied region, as well as the water availability in the Ebro basin.Se han simulado los caudales de cinco cabeceras de ríos en los Pirineos centrales españoles, considerando diferentes escenarios de cambio climático y de uso del suelo. Los caudales fueron simulados utilizando el modelo hidroecológico RHESSys (Regional Hydro-Ecologic Simulation System). Los resultados muestran que los cambios proyectados por un conjunto de modelos climáticos regionales en precipitaciones y temperaturas en el siglo XXI podrían causar una disminución del caudal anual entre el 13% y el 23%, dependiendo de la cuenca considerada. Cuando se añade a los efectos del cambio climático el efecto del aumento de la cubierta forestal en las cuencas, la disminución de los caudales anuales oscila entre el 19% y el 32%, dependiendo de la cuenca estudiada. Los mayores cambios hidrológicos se producirían a principios de primavera, verano y otoño, cuando la disminución puede superar el 40% respecto a los valores actuales. El invierno es la estación menos afectada como consecuencia del aumento de la escorrentía debido a una reducción del agua acumulada en forma de nieve y a un inicio más temprano de su fusión, así como por que durante los meses fríos el consumo de agua por parte de la vegetación es menor. La magnitud del cambio hidrológico, resultado de los escenarios de cambio ambiental, puede afectar seriamente a la gestión de los recursos hídricos y a las comunidades vegetales del Pirineo central, así como a la disponibilidad de agua en el conjunto de la cuenca del Ebro
    corecore