32 research outputs found

    A Yersinia Effector with Enhanced Inhibitory Activity on the NF-ÎșB Pathway Activates the NLRP3/ASC/Caspase-1 Inflammasome in Macrophages

    Get PDF
    A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKÎČ to cause TLR4-dependent apoptosis in naĂŻve macrophages. A YopJ isoform in Y. pestis KIM (YopJKIM) has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1ÎČ in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJKIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJKIM were important for enhanced apoptosis, caspase-1 activation, and IL-1ÎČ secretion. As compared to YopJCO92, YopJKIM displayed an enhanced capacity to inhibit phosphorylation of IÎșB-α in macrophages and to bind IKKÎČ in vitro. YopJKIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1ÎČ secretion occurred in IKKÎČ-deficient macrophages infected with Y. pestis expressing YopJCO92, confirming that the NF-ÎșB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1ÎČ in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naĂŻve macrophages in response to infection with a pathogen that inhibits IKKÎČ and MAPK kinases and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis may represent an early innate immune response to highly virulent pathogens such as Y. pestis KIM that have evolved an enhanced ability to inhibit host signaling pathways

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624

    Radial anisotropy in seismic reference models of the mantle

    No full text
    Sambridge's Neighborhood Algorithm was applied to normal mode and surface wave phase velocity data to determine the likelihood of radial anisotropy in mantle reference models. This full model space search technique provides probability density functions for each model parameter and therefore reliable estimates of resolution and uncertainty, without having to introduce unnecessary regularization on the model space. Our results for shear wave anisotropy (described by parameter Ο) show a fast decrease with depth with no significant deviation ftom Preliminary Reference Earth Model (PREM) at any depth. The data do not require strong deviations from PREM for P wave anisotropy either, except between 220 and 400 km depth and in the D″layer. The intermediate parameter η might depart from PREM between 220 and 670 km depth. This implies a likely deeper P wave anisotropy and η anisotropy than S wave anisotropy. The sign change in the anisotropic parameters across the 670-km discontinuity found by other authors is not warranted by our data set, which is far more extensive than in previous studies. We found that density needs to be well resolved because we observe a high dependence of the results for P wave-related parameters on the presence or absence of density in the parameterization. S wave anisotropy and η are less affected by density. A well-resolved negative density anomaly was found in the uppermost mantle, and a density excess was observed in the transition zone and the lowermost mantle which might be a seismic signature of the recently identified postperovskite phase. Copyright 2006 by the American Geophysical Union
    corecore