1,074 research outputs found

    Handwashing: A Study of the History, Methods, and Psychology Surrounding Hand Hygiene

    Get PDF
    This paper covers three different areas concerning handwashing. First a review of the history of handwashing is done, going from ancient times to its introduction into modern medicine via Dr. Ignaz Semmelweis. This section gives a sobering reminder not to instantly reject data that comes in conflict with prevalent thought. Then current medical knowledge about handwashing is examined, and the conclusion reached states that handwashing is best done with non-antibacterial soap. Finally, a review of the psychology of handwashing shows that medical professionals often tend toward neglect if unwatched and unmotivated by an outside source. However, those suffering from obsessive compulsive disorder tend to wash their hands so often that it damages the normal flora and anatomy of the hands

    Collision and Diffusion in Microwave Breakdown of Nitrogen Gas in and around Microgaps

    Get PDF
    The microwave induced breakdown of N2 gas in microgaps was modeled using the collision frequency between electrons and neutral molecules and the effective electric field concept. Low pressure breakdown at the threshold electric field occurs outside the gap, but at high pressures it is found to occur inside the microgap with a large threshold breakdown electric field corresponding to a very large electron oscillation amplitude. Three distinct pressure regimes are apparent in the microgap breakdown: a low pressure multipactor branch, a mid-pressure Paschen branch, both of which occur in the space outside the microgap, and a high pressure diffusion-drift branch, which occurs inside the microgap. The Paschen and diffusion-drift branches are divided by a sharp transition and each separately fits the collision frequency model. There is evidence that considerable electron loss to the microgap faces accompanies the diffusion-drift branch in microgaps.Comment: 4 figure

    A Parallax Distance to the Microquasar GRS 1915+105 and a Revised Estimate of its Black Hole Mass

    Full text link
    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the micro quasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6 (+2.0,-1.6) kpc and a revised estimate for the mass of the black hole of 12.4 (+2.0,-1.8) Msun. GRS 1915+105 is at about the same distance as some HII regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is -3.19 +/- 0.03 mas/y and -6.24 +/- 0.05 mas/y toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 +/-24 km/s at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60 +/- 5 deg and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole >2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.Comment: 20 pages; 2 tables; 6 figure

    RXTE Spectral Observations of the 1996-97 Outburst of the Microquasar GRO J1655-40

    Get PDF
    Excellent coverage of the entire 16-month 1996-97 outburst cycle of GRO J1655-40 was provided by RXTE. We present a full spectral analysis of these data, which includes 52 PCA spectra from 2.5-20 keV and HEXTE spectra above 20 keV. We also include a nearly continuous ASM light curve with several intensity measurements per day. The data are interpreted in the context of the multicolor blackbody disk/power-law model. The source is observed in the very high, high/soft, and low/hard outburst states. During the very high state, the source exhibits intense hard flares on time scales of hours to days which are correlated with changes in both the fitted temperature and radius of the inner accretion disk. During the high/soft state, the spectrum is dominated by the soft thermal emission from the accretion disk with spectral parameters that suggest approximately constant inner disk radius and temperature. We find that a tight relationship exists between the observed inner radius of the disk and the flux in the power-law component. During intense hard flares, the inner disk radius is observed to decrease by as much as a factor of three on a time scale of days. The apparent decrease of the inner disk radius observed during the flares may be due to the failure of the multicolor disk model caused by a steepening of the radial temperature profile in the disk coupled with increased spectral hardening and not physical changes of the inner disk radius. Assuming that our spectral model is valid during periods of weak power-law emission, our most likely value for the inner disk radius implies a* < 0.7. Such a low value for the black hole angular momentum is inconsistent with the relativistic frame dragging and the `diskoseismic' models as interpretations for the 300 Hz X-ray QPO seen during some of these RXTE observations.Comment: 34 pages including 9 figures and 3 tables. Accepted for publication in the Astrophysical Journal. Our interpretation of the data and the main conclusions have been significantly revise
    • …
    corecore