127,566 research outputs found

    Calculation of Elastic Green's Functions for Lattices with Cavities

    Full text link
    In this Brief Report, we present an algorithm for calculating the elastic Lattice Greens Function of a regular lattice, in which defects are created by removing lattice points. The method is computationally efficient, since the required matrix operations are on matrices that scale with the size of the defect subspace, and not with the size of the full lattice. This method allows the treatment of force fields with multi-atom interactions.Comment: 3 pages. RevTeX, using epsfig.sty. One figur

    Understanding and Improving the Wang-Landau Algorithm

    Full text link
    We present a mathematical analysis of the Wang-Landau algorithm, prove its convergence, identify sources of errors and strategies for optimization. In particular, we found the histogram increases uniformly with small fluctuation after a stage of initial accumulation, and the statistical error is found to scale as lnf\sqrt{\ln f} with the modification factor ff. This has implications for strategies for obtaining fast convergence.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Critical domain-wall dynamics of model B

    Full text link
    With Monte Carlo methods, we simulate the critical domain-wall dynamics of model B, taking the two-dimensional Ising model as an example. In the macroscopic short-time regime, a dynamic scaling form is revealed. Due to the existence of the quasi-random walkers, the magnetization shows intrinsic dependence on the lattice size LL. A new exponent which governs the LL-dependence of the magnetization is measured to be σ=0.243(8)\sigma=0.243(8).Comment: 10pages, 4 figure

    Cavity-QED with cold atoms trapped in a double-well potential

    Full text link
    We investigate the interplay dynamics of a cavity qed system, where the two-level atoms are trapped in a double-well potential, and the cavity mode, with a frequency largely detuned to the atomic level splitting, is driven by a probe laser. The interaction between the center-of-mass motion of the atoms and the cavity mode is induced by the position dependent atom-field coupling. The dynamics of the system is characterized by two distinct time scales, the inverse of the atomic interwell tunneling rate and the inverse of the cavity loss rate. The system shows drastically different (quasi) steady behaviors in the short-time and long-time intervals.Comment: 8 pages, 5 figue

    Unstable particle's wave-function renormalization prescription

    Full text link
    We strictly define two set Wave-function Renormalization Constants (WRC) under the LSZ reduction formula for unstable particles at the first time. Then by introducing antiparticle's WRC and the CPT conservation law we obtain a new wave-function renormalization condition which can be used to totally determine the two set WRC. We calculate two physical processes to manifest the consistence of the present wave-function renormalization prescription with the gauge theory in standard model. We also prove that the conventional wave-function renormalization prescription which discards the imaginary part of unstable particle's WRC leads to physical amplitude gauge dependent.Comment: 10 pages, 3 figure

    Search for a circum-planetary material and orbital period variations of short-period Kepler exoplanet candidates

    Full text link
    A unique short-period Mercury-size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum-planetary material - comet-like tail. Close-in exoplanets, like KIC012557548b, are subjected to the greatest planet-star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet-like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet-like tails similar to KIC012557548b and for long-term orbital period variations. We are curious about frequency of comet-like tail formation among short-period Kepler exoplanet candidates. We concentrate on a sample of 20 close-in candidates with a period similar to KIC012557548b from the Kepler mission.Comment: 19 pages, 75 figures, AN accepte

    Creep motion of a domain wall in the two-dimensional random-field Ising model with a driving field

    Full text link
    With Monte Carlo simulations, we study the creep motion of a domain wall in the two-dimensional random-field Ising model with a driving field. We observe the nonlinear fieldvelocity relation, and determine the creep exponent {\mu}. To further investigate the universality class of the creep motion, we also measure the roughness exponent {\zeta} and energy barrier exponent {\psi} from the zero-field relaxation process. We find that all the exponents depend on the strength of disorder.Comment: 5 pages, 4 figure

    Precise dispersive data analysis of the f0(600) pole

    Get PDF
    We review how the use of recent precise data on kaon decays together with forward dispersion relations (FDR) and Roy's equations allow us to determine the sigma resonance pole position very precisely, by using only experimental input. In addition, we present preliminary results for a modified set of Roy-like equations with only one subtraction, that show a remarkable improvement in the precision around the sigma region. We also improve the matching between the parametrizations at low and intermediate energy of the S0 wave, and show that the effect of this on the sigma pole position is negligible.Comment: 4 pages, 1 figure. To appear in the proceedings of the Meson 2008 conference, June 6-10, Cracow, Polan
    corecore