1,442 research outputs found

    Semiclassical transition probabilities by an asymptotic evaluation of the S matrix for elastic and inelastic collisions. Bessel uniform approximation

    Get PDF
    It has been observed in the past that the usual Airy uniform approximation gives probabilities greater than one, especially for near elastic collisions. By mapping the phase onto −ζ cos y + ky + A rather than (1∕3)y^3 − ζy + A one obtains a uniform approximation involving Bessel functions of the first kind, which approaches unity for the elastic collision. This Bessel uniform approximation is no more complicated than the Airy and also gives good agreement with exact quantum results, even if probabilities are large

    Migrating to Cloud-Native Architectures Using Microservices: An Experience Report

    Full text link
    Migration to the cloud has been a popular topic in industry and academia in recent years. Despite many benefits that the cloud presents, such as high availability and scalability, most of the on-premise application architectures are not ready to fully exploit the benefits of this environment, and adapting them to this environment is a non-trivial task. Microservices have appeared recently as novel architectural styles that are native to the cloud. These cloud-native architectures can facilitate migrating on-premise architectures to fully benefit from the cloud environments because non-functional attributes, like scalability, are inherent in this style. The existing approaches on cloud migration does not mostly consider cloud-native architectures as their first-class citizens. As a result, the final product may not meet its primary drivers for migration. In this paper, we intend to report our experience and lessons learned in an ongoing project on migrating a monolithic on-premise software architecture to microservices. We concluded that microservices is not a one-fit-all solution as it introduces new complexities to the system, and many factors, such as distribution complexities, should be considered before adopting this style. However, if adopted in a context that needs high flexibility in terms of scalability and availability, it can deliver its promised benefits

    Suborbital Payload Testing Aboard Level 3 Rocket Research Platform

    Get PDF
    Embry-Riddle Aeronautical University (ERAU) has launched several suborbital scientific payloads aboard Blue Origin’s New Shepard in 2017 and 2019. Students continue gaining hands-on experience in rocket design and construction, and payload integration and testing of future and more mature payloads to be launched into space. A Level 3 Rocket is being designed and developed at ERAU to serve as a scaled-down model research platform for launching and testing of payloads that will be later flown in commercial suborbital platforms such as Blue Origin’s New Shepard and PLD space Miura 1 rockets. Computer simulations were conducted to calculate the key parameters such as flight trajectory profiles, stability and flight velocities for different rocket motors configurations. A preliminary design of the rocket was developed using Computer-Aided Design (CAD) software. The rocket will accommodate multiple payloads (Cubesats, NanoLabs, TubeSats) designed and developed in the Payload Applied, Technology and Operations (PATO) laboratory. The rocket will be primarily constructed of carbon fiber composite as it has a high strength to weight ratio. These simulations are used to select a suitable motor for the rocket according to the flight requirements and landing restrictions. This prospective Level 3 Rocket is referred to as Suborbital Technology Experimental Vehicle for Exploration (STEVE). Rocket procedures and results from the design, simulation, construction and assembly will be presented

    A Phase-Field Model of Spiral Dendritic Growth

    Full text link
    Domains of condensed-phase monolayers of chiral molecules exhibit a variety of interesting nonequilibrium structures when formed via pressurization. To model these domain patterns, we add a complex field describing the tilt degree of freedom to an (anisotropic) complex-phase-field solidification model. The resulting formalism allows for the inclusion of (in general, non-reflection symmetric) interactions between the tilt, the solid-liquid interface, and the bond orientation. Simulations demonstrate the ability of the model to exhibit spiral dendritic growth.Comment: text plus Four postscript figure file

    Signature of Chaotic Diffusion in Band Spectra

    Full text link
    We investigate the two-point correlations in the band spectra of spatially periodic systems that exhibit chaotic diffusion in the classical limit. By including level pairs pertaining to non-identical quasimomenta, we define form factors with the winding number as a spatial argument. For times smaller than the Heisenberg time, they are related to the full space-time dependence of the classical diffusion propagator. They approach constant asymptotes via a regime, reflecting quantal ballistic motion, where they decay by a factor proportional to the number of unit cells. We derive a universal scaling function for the long-time behaviour. Our results are substantiated by a numerical study of the kicked rotor on a torus and a quasi-one-dimensional billiard chain.Comment: 8 pages, REVTeX, 5 figures (eps

    The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors

    Full text link
    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed "current-loop" (CL) model that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely-related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several new experiments to explore of flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field, and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to Phys. Rev. B. Higher resolution figures may be obtained by contacting the author
    • …
    corecore