4,962 research outputs found
Surprisingly Little O VI Emission Arises in the Local Bubble
This paper reports the first study of the O VI resonance line emission (1032,
1038 Angstroms) originating in the Local Bubble (or Local Hot Bubble)
surrounding the solar neighborhood. In spite of the fact that O VI absorption
within the Local Bubble has been observed, no resonance line emission was
detected during our 230 ksec Far Ultraviolet Spectroscopic Explorer observation
toward a ``shadowing'' filament in the southern Galactic hemisphere. As a
result, tight 2 sigma upper limits are set on the intensities in the 1032 and
1038 Angstrom emission lines: 500 and 530 photons cm^{-2} s^{-1} sr^{-1},
respectively. These values place strict constraints on models and simulations.
They suggest that the O VI-bearing plasma and the X-ray emissive plasma reside
in distinct regions of the Local Bubble and are not mixed in a single plasma,
whether in equilibrium with T ~ 10^6 K or highly overionized with T ~ 4 to 6 x
10^4 K. If the line of sight intersects multiple cool clouds within the Local
Bubble, then the results also suggest that hot/cool transition zones differ
from those in current simulations. With these intensity upper limits, we
establish limits on the electron density, thermal pressure, pathlength, and
cooling timescale of the O VI-bearing plasma in the Local Bubble. Furthermore,
the intensity of O VI resonance line doublet photons originating in the
Galactic thick disk and halo is determined (3500 to 4300 photons cm^{-2} s^{-1}
sr^{-1}), and the electron density, thermal pressure, pathlength, and cooling
timescale of its O VI-bearing plasma are calculated. The pressure in the
Galactic halo's O VI-bearing plasma (3100 to 3800 K cm^{-3}) agrees with model
predictions for the total pressure in the thick disk/lower halo. We also report
the results of searches for other emission lines.Comment: accepted by ApJ, scheduled for May 2003, replacement astro-ph
submission corrects typos and grammatical errors in original versio
Supernova Remnants in the Magellanic Clouds. IV. X-Ray Emission from the Largest SNR in the LMC
We present the first X-ray detection of SNR 0450-70.9 the largest known
supernova remnant (SNR) in the Large Magellanic Cloud. To study the physical
conditions of this SNR, we have obtained XMM-Newton X-ray observations, optical
images and high-dispersion spectra, and radio continuum maps. Optical images of
SNR 0450-70.9 show a large, irregular elliptical shell with bright filaments
along the eastern and western rims and within the shell interior. The interior
filaments have higher [S II]/Halpha ratios and form an apparent inner shell
morphology. The X-ray emission region is smaller than the full extent of the
optical shell, with the brightest X-ray emission found within the small
interior shell and on the western rim of the large shell. The expansion
velocity of the small shell is ~220 km/s, while the large shell is ~120 km/s.
The radio image shows central brightening and a fairly flat radio spectral
index over the SNR. However, no point X-ray or radio source corresponding to a
pulsar is detected and the X-ray emission is predominantly thermal. Therefore,
these phenomena can be most reasonably explained in terms of the advanced age
of the large SNR. Using hydrodynamic models combined with a nonequilibrium
ionization model for thermal X-ray emission, we derived a lower limit on the
SNR age of about 45,000 yr, well into the later stages of SNR evolution.
Despite this, the temperature and density derived from spectral fits to the
X-ray emission indicate that the remnant is still overpressured, and thus that
the development is largely driven by hot gas in the SNR interior.Comment: Accepted for publication in The Astrophysical Journa
Dental Pulp Cell Behavior in Biomimetic Environments
There is emerging recognition of the importance of a physiologically relevant in vitro cell culture environment to promote maintenance of stem cells for tissue engineering and regenerative medicine purposes. In vivo, appropriate cellular cues are provided by local tissue extracellular matrix (ECM), and these are not currently recapitulated well in vitro using traditional cultureware. We therefore hypothesized that better replication of the in vivo environment for cell culture and differentiation could be achieved by culturing dental pulp cells with their associated ECM. Primary dental pulp cells were subsequently seeded onto pulp-derived ECM-coated cultureware. While at up to 24 h they exhibited the same level of adherence as those cells seeded on tissue cultureâtreated surfaces, by 4 d cell numbers and proliferation rates were significantly decreased in cells grown on pulp ECM compared with controls. Analysis of stem cell and differentiation marker transcripts, as well as Oct 3/4 protein distribution, supported the hypothesis that cells cultured on ECM better maintained a stem cell phenotype compared with those cultured on standard tissue cultureâtreated surfaces. Subsequent differentiation analysis of cells cultured on ECM demonstrated that they exhibited enhanced mineralization, as determined by alizarin red staining and mineralized marker expression. Supplementation of a 3% alginate hydrogel with pulp ECM components and dental pulp cells followed by differentiation induction in mineralization medium resulted in a time-dependent mineral deposition at the periphery of the construct, as demonstrated histologically and using microâcomputed tomography analysis, which was reminiscent of tooth structure. In conclusion, data indicate that culture of pulp cells in the presence of ECM better replicates the in vivo environment, maintaining a stem cell phenotype suitable for downstream tissue engineering applications
Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1
Patterned mineralisation is a feature of many hard-tissues. The impressive mechanical properties exhibited by such tissues can be, in part, attributed to the patterned deposition of mineral within the organic matrix. Although not thermodynamically favourable, the deposition of calcium phosphate based mineral within collagen fibres occurs in vivo in bone and dentine. As a consequence, numerous researchers have investigated how matrix proteins may be conditioned to enable patterned mineral deposition to recapitulate the structures found in nature. In this study, we have demonstrated that this patterned mineralisation of collagen type I may be induced simply by the pretreatment of the collagen with orthosilicic acid (OSA). The OSA treatment of the collagen resulted in a structural change to the collagen fibres, modifying fibril diameter and changing the kinetics of fibre formation. NMR demonstrated that the OSA preferentially located to the termini of the procollagen fibrils, thereby templating the formation of apatitic calcium phosphate crystals within the collagen fibrils (as shown using TEM, EDX and SAED). This work demonstrates how simple inorganic ions can have potent effects on structuring biological precipitates and suggests why trace quantities of silicon ions are essential to the formation of healthy hard tissues
Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion
H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the âEasternâ G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages
Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
Mutations in the gene encoding dystrophin, a protein that maintains muscle integrity and function, cause Duchenne muscular dystrophy (DMD). The deltaE50-MD dog model of DMD harbors a mutation corresponding to a mutational âhotspotâ in the human DMD gene. We used adeno-associated viruses to deliver CRISPR gene editing components to four dogs and examined dystrophin protein expression 6 weeks after intramuscular delivery (n = 2) or 8 weeks after systemic delivery (n = 2). After systemic delivery in skeletal muscle, dystrophin was restored to levels ranging from 3 to 90% of normal, depending on muscle type. In cardiac muscle, dystrophin levels in the dog receiving the highest dose reached 92% of normal. The treated dogs also showed improved muscle histology. These large-animal data support the concept that, with further development, gene editing approaches may prove clinically useful for the treatment of DMD
Relationship of Sorghum kernel size to physiochemical, milling, pasting, and cooking properties
Effects of kernel size on grain sorghum [Sorghum bicolor (L.) Moench] quality were studied in an experiment designed to separate effects of kernel size from seedlot. The study utilized three sieve fractions of varying kernel diameter (\u3e3.35, \u3e2.80 and \u3e2.36 mm) from six seedlots. Chemical composition, physical characteristics, milling characteristics, pasting properties, and cooking qualities were determined for each kernel size fraction. Large kernels lost less relative mass during 1 min of decortication, were higher in protein concentration, and lower in ash. Milling yields were higher from large kernels, and flour from large kernels had higher water absorbance, brighter white color, and larger particle size. Kernel size effects on Rapid Visco Analyzer (RVA) properties were not consistent. These results suggest that within the sorghum seedlots studied, an increase in kernel size is associated with an increase in sorghum quality as defined by the parameters measured in this study
Selection Factors in Housing Among Rural Low-To-Moderate Income Residents
Growth in rural areas has increased the need to examine more closely the quality and acceptability of different types of existing housing. This study focuses on the reasons rural residents moved to their housing and whether their needs were satisfied by their selections. Comparisons of reasons for moving among conventional home, mobile home, and apartment residents indicated similar motivations for housing choices. Comparisons of present housing satisfaction revealed that a large majority of all respondents selected housing that met their needs. The results suggest that despite the predominant preference for single-family conventionally built homes, a substantial portion of future housing demand for low-to-moderately priced housing in rural areas could be accommodated quite adequately with nonconventional housing such as mobile homes and apartments
- âŠ