6,495 research outputs found

    The reaction 2H(p,pp)n in three kinematical configurations at E_p = 16 MeV

    Full text link
    We measured the cross sections of the 2^2H(p,pp)n breakup reaction at Ep_p=16 MeV in three kinematical configurations: the np final-state interaction (FSI), the co-planar star (CST), and an intermediate-star (IST) geometry. The cross sections are compared with theoretical predictions based on the CD Bonn potential alone and combined with the updated 2π\pi-exchange Tucson-Melbourne three-nucleon force (TM99'), calculated without inclusion of the Coulomb interaction. The resulting excellent agreement between data and pure CD Bonn predictions in the FSI testifies to the smallness of three-nucleon force (3NF) effects as well as the insignificance of the Coulomb force for this particular configuration and energy. The CST also agrees well whereas the IST results show small deviations between measurements and theory seen before in the pd breakup space-star geometries which point to possible Coulomb effects. An additional comparison with EFT predictions (without 3NF) up to order N3^3LO shows excellent agreement in the FSI case and a rather similar agreement as for CD Bonn in the CST and IST situations.Comment: 20 pages, 11 figure

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of 20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of 2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure

    The Polarized H and D Atomic Beam Source for ANKE at COSY-J\"ulich

    Get PDF
    A polarized atomic beam source was developed for the polarized internal storage-cell gas target at the magnet spectrometer ANKE of COSY-J\"ulich. The intensities of the beams injected into the storage cell, measured with a compression tube, are 7.510167.5\cdot 10^{16} hydrogen atoms/s (two hyperfine states) and 3.910163.9\cdot 10^{16} deuterium atoms/s (three hyperfine states). For the hydrogen beam the achieved vector polarizations are pz±0.92p_{\rm z}\approx\pm0.92. For the deuterium beam, the obtained combinations of vector and tensor (pzzp_{\rm zz}) polarizations are pz±0.90p_{\rm z}\approx\pm 0.90 (with a constant pzz+0.86p_{\rm zz}\approx +0.86), and pzz=+0.90p_{\rm zz}=+0.90 or pzz=1.71p_{\rm zz}=-1.71 (both with vanishing pzp_{\rm z}). The paper includes a detailed technical description of the apparatus and of the investigations performed during the development.Comment: 18 pages, 26 figures, 4 table

    Dark-Photon Search using Data from CRESST-II Phase 2

    Full text link
    Identifying the nature and origin of dark matter is one of the major challenges for modern astro and particle physics. Direct dark-matter searches aim at an observation of dark-matter particles interacting within detectors. The focus of several such searches is on interactions with nuclei as provided e.g. by Weakly Interacting Massive Particles. However, there is a variety of dark-matter candidates favoring interactions with electrons rather than with nuclei. One example are dark photons, i.e., long-lived vector particles with a kinetic mixing to standard-model photons. In this work we present constraints on this kinetic mixing based on data from CRESST-II Phase 2 corresponding to an exposure before cuts of 52\,kg-days. These constraints improve the existing ones for dark-photon masses between 0.3 and 0.7\,keV/c2^2.Comment: submitted EPJ

    Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground

    Full text link
    Models for light dark matter particles with masses below 1 GeV/c2^2 are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν\nu-cleus experiment has achieved an energy threshold of Eth=(19.7±0.9)E_{th}=(19.7\pm 0.9) eV, which is one order of magnitude lower than previous results and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 MeV/c2^2 and 500 MeV/c2^2.Comment: 6 pages, 6 figures, v3: ancillary files added, v4: high energy spectrum (0.6-12keV) added to ancillary file
    corecore