814 research outputs found

    Enhanced dispersion interaction between quasi-one dimensional conducting collinear structures

    Full text link
    Recent investigations have highlighted the failure of a sum of R6R^{-6} terms to represent the dispersion interaction in parallel metallic, anisotropic, linear or planar nanostructures [J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006) and references therein]. By applying a simple coupled plasmon approach and using electron hydrodynamics, we numerically evaluate the dispersion (non-contact van der Waals) interaction between two conducting wires in a collinear pointing configuration. This case is compared to that of two insulating wires in an identical geometry, where the dispersion interaction is modelled both within a pairwise summation framework, and by adding a pinning potential to our theory leading to a standard oscillator-type model of insulating dielectric behavior. Our results provide a further example of enhanced dispersion interaction between two conducting nanosystems compared to the case of two insulating ones. Unlike our previous work, this calculation explores a region of relatively close coupling where, although the electronic clouds do not overlap, we are still far from the asymptotic region where a single power law describes the dispersion energy. We find that strong differences in dispersion attraction between metallic and semiconducting / insulating cases persist into this non-asymptotic region. While our theory will need to be supplemented with additional short-ranged terms when the electronic clouds overlap, it does not suffer from the short-distance divergence exhibited by purely asymptotic theories, and gives a natural saturation of the dispersion energy as the wires come into contact.Comment: 10 pages, 5 figures. Added new extended numerical calculations, new figures, extra references and heavily revised tex

    Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States

    Get PDF
    We study radial wave packets produced by short-pulsed laser fields acting on Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect theory. We begin with a time-dependent perturbative calculation for alkali-metal atoms, incorporating the atomic-excitation process. This provides insight into the general wave packet behavior and demonstrates agreement with conventional theory. We then obtain an alternative analytical description of a radial wave packet as a member of a particular family of squeezed states, which we call radial squeezed states. By construction, these have close to minimum uncertainty in the radial coordinates during the first pass through the outer apsidal point. The properties of radial squeezed states are investigated, and they are shown to provide a description of certain aspects of Rydberg atoms excited by short-pulsed laser fields. We derive expressions for the time evolution and the autocorrelation of the radial squeezed states, and we study numerically and analytically their behavior in several alkali-metal atoms. Full and fractional revivals are observed. Comparisons show agreement with other theoretical results and with experiment.Comment: published in Physical Review

    Quantum mechanics/molecular mechanics modeling of drug metabolism:Mexiletine N-hydroxylation by cytochrome P450 1A2

    Get PDF
    The mechanism of cytochrome P450­(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (<i>R</i>)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM­(B3LYP-D)/MM­(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism

    Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells

    Get PDF
    The recent advent of two-dimensional monolayer materials with tunable optoelectronic properties and high carrier mobility offers renewed opportunities for efficient, ultra-thin excitonic solar cells alternative to those based on conjugated polymer and small molecule donors. Using first-principles density functional theory and many-body calculations, we demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with commonly used acceptors such as PCBM fullerene or semiconducting carbon nanotubes can provide excitonic solar cells with tunable absorber gap, donor-acceptor interface band alignment, and power conversion efficiency, as well as novel device architectures. For the case of CBN-PCBM devices, we predict the limit of power conversion efficiencies to be in the 10 - 20% range depending on the CBN monolayer structure. Our results demonstrate the possibility of using monolayer materials in tunable, efficient, polymer-free thin-film solar cells in which unexplored exciton and carrier transport regimes are at play.Comment: 7 pages, 5 figure

    Desorption of n-alkanes from graphene: a van der Waals density functional study

    Full text link
    A recent study of temperature programmed desorption (TPD) measurements of small n-alkanes (CNH2N+2) from C(0001) deposited on Pt(111) shows a linear relationship of the desorption energy with increasing n-alkane chain length. We here present a van der Waals density functional study of the desorption barrier energy of the ten smallest n-alkanes (N = 1 to 10) from graphene. We find linear scaling with N, including a nonzero intercept with the energy axis, i.e., an offset at the extrapolation to N = 0. This calculated offset is quantitatively similar to the results of the TPD measurements. From further calculations of the polyethylene polymer we offer a suggestion for the origin of the offset.Comment: 3 pictures, 1 tabl

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

    Full text link
    We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the basal plane of graphite using thermal desorption spectroscopy. Desorption kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV, respectively. Benzene and naphthalene follow simple first order desorption kinetics while coronene and ovalene exhibit fractional order kinetics owing to the stability of 2-D adsorbate islands up to the desorption temperature. Pre-exponential frequency factors are found to be in the range 101410^{14}-1021s110^{21} s^{-1} as obtained from both Falconer--Madix (isothermal desorption) analysis and Antoine's fit to vapour pressure data. The resulting binding energy per carbon atom of the PAH is 52±52\pm5 meV and can be identified with the interlayer cohesive energy of graphite. The resulting cleavage energy of graphite is 61±561\pm5~meV/atom which is considerably larger than previously reported experimental values.Comment: 8 pages, 4 figures, 2 table

    Unified Treatment of Asymptotic van der Waals Forces

    Full text link
    In a framework for long-range density-functional theory we present a unified full-field treatment of the asymptotic van der Waals interaction for atoms, molecules, surfaces, and other objects. The only input needed consists of the electron densities of the interacting fragments and the static polarizability or the static image plane, which can be easily evaluated in a ground-state density-functional calculation for each fragment. Results for separated atoms, molecules, and for atoms/molecules outside surfaces are in agreement with those of other, more elaborate, calculations.Comment: 6 pages, 5 figure
    corecore