64,448 research outputs found

    Structure and dynamics of topological defects in a glassy liquid on a negatively curved manifold

    Get PDF
    We study the low-temperature regime of an atomic liquid on the hyperbolic plane by means of molecular dynamics simulation and we compare the results to a continuum theory of defects in a negatively curved hexagonal background. In agreement with the theory and previous results on positively curved (spherical) surfaces, we find that the atomic configurations consist of isolated defect structures, dubbed "grain boundary scars", that form around an irreducible density of curvature-induced disclinations in an otherwise hexagonal background. We investigate the structure and the dynamics of these grain boundary scars

    Quantum Holonomies in (2+1)-Dimensional Gravity

    Full text link
    We describe an approach to the quantization of (2+1)--dimensional gravity with topology R x T^2 and negative cosmological constant, which uses two quantum holonomy matrices satisfying a q--commutation relation. Solutions of diagonal and upper--triangular form are constructed, which in the latter case exhibit additional, non--trivial internal relations for each holonomy matrix. This leads to the notion of quantum matrix pairs. These are pairs of matrices with non-commuting entries, which have the same pattern of internal relations, q-commute with each other under matrix multiplication, and are such that products of powers of the matrices obey the same pattern of internal relations as the original pair. This has implications for the classical moduli space, described by ordered pairs of commuting SL(2,R) matrices modulo simultaneous conjugation by SL(2,R) matrices.Comment: 5 pages, to appear in the proceedings of 10th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG X MMIII), Rio de Janeiro, Brazil, 20-26 Jul 200

    Design and implementation of a medium speed communications interface and protocol for a low cost, refreshed display computer

    Get PDF
    The design and implementation of hardware and software systems involved in using a 40,000 bit/second communication line as the connecting link between an IMLAC PDS 1-D display computer and a Univac 1108 computer system were described. The IMLAC consists of two independent processors sharing a common memory. The display processor generates the deflection and beam control currents as it interprets a program contained in the memory; the minicomputer has a general instruction set and is responsible for starting and stopping the display processor and for communicating with the outside world through the keyboard, teletype, light pen, and communication line. The processing time associated with each data byte was minimized by designing the input and output processes as finite state machines which automatically sequence from each state to the next. Several tests of the communication link and the IMLAC software were made using a special low capacity computer grade cable between the IMLAC and the Univac

    An LQR controller design approach for a Large Gap Magnetic Suspension System (LGMSS)

    Get PDF
    Two control approaches for a Large Gap Magnetic Suspension System (LGMSS) are investigated and numerical results are presented. The approaches are based on Linear Quadratic Regulator (LQR) control theory and include a nonzero set point regulator with constant disturbance input and an integral feedback regulator. The LGMSS provides five degree of freedom control of a cylindrical suspended element which is composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar way
    corecore