2 research outputs found

    Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(<i>g</i>), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study

    No full text
    The mechanism and kinetics of interactions between dimethyl methylphosphonate (DMMP), a key chemical warfare agent (CWA) simulant, and Zr<sub>6</sub>-based metal organic frameworks (MOFs) have been investigated with in situ infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and DFT calculations. DMMP was found to adsorb molecularly to UiO-66 through the formation of hydrogen bonds between the phosphoryl oxygen and the free hydroxyl groups associated with Zr<sub>6</sub> nodes on the surface of crystallites and not within the bulk MOF structure. Unlike UiO-66, the infrared spectra for UiO-67 and MOF-808, recorded during DMMP exposure, suggest that uptake occurs through both physisorption and chemisorption. The XPS spectra of MOF-808 zirconium 3d electrons reveal a charge redistribution following exposure to DMMP. In addition, analysis of the phosphorus 2p electrons following exposure and thermal annealing to 600 K indicates that two types of stable phosphorus-containing species exist within the MOF. DFT calculations, used to guide the IR band assignments and to help interpret the XPS features, suggest that uptake is driven by nucleophilic addition of an OH group to DMMP with subsequent elimination of a methoxy substituent to form strongly bound methyl methylphosphonic acid (MMPA). The rates of product formation indicate that there are likely two distinct uptake processes, requiring rate constants that differ by approximately an order of magnitude. However, the rates of molecular uptake were found to be nearly identical to the rates of reaction, which strongly suggests that the reaction rates are diffusion-limited. The final products were found to inhibit further reactions within the MOFs, and these products could not be thermally driven from the MOFs prior to decomposition of the MOFs themselves

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Full text link
    INTRODUCTION: Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS: More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS: The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS: With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years
    corecore