7,431 research outputs found

    Aerobee 150 structural and aerodynamic pitch coupling

    Get PDF
    Aerobee 150 structural and aerodynamic pitch coupling failure analysis based on flight performance data reductio

    Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation

    Get PDF
    6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe

    Shock heating in the nearby radio galaxy NGC 3801

    Get PDF
    Original article can be found at: http://www.journals.uchicago.edu/ApJ/--Copyright American Astronomical SocietyPeer reviewe

    The Disturbed 17 keV Cluster Associated with the Radio Galaxy 3C 438

    Full text link
    We present results from a {\em Chandra} observation of the cluster gas associated with the FR II radio galaxy 3C 438. This radio galaxy is embedded within a massive cluster with gas temperature ∼\sim17 keV and bolometric luminosity of 6×1045\times10^{45} ergs s−1^{-1}. It is unclear if this high temperature represents the gravitational mass of the cluster, or if this is an already high (∼\sim 11 keV) temperature cluster that has been heated transiently. We detect a surface brightness discontinuity in the gas that extends ∼\sim600 kpc through the cluster. The radio galaxy 3C 438 is too small (∼\sim110 kpc across) and too weak to have created this large disturbance in the gas. The discontinuity must be the result of either an extremely powerful nuclear outburst or the major merger of two massive clusters. If the observed features are the result of a nuclear outburst, it must be from an earlier epoch of unusually energetic nuclear activity. However, the energy required (∼1063\sim10^{63} ergs) to move the gas on the observed spatial scales strongly supports the merger hypothesis. In either scenario, this is one of the most extreme events in the local Universe.Comment: 13 pages, 4 figures, 1 table - accepted for publication in the Astrophysical Journal Letter

    Proposed magneto-electrostatic ring trap for neutral atoms

    Get PDF
    We propose a novel trap for confining cold neutral atoms in a microscopic ring using a magneto-electrostatic potential. The trapping potential is derived from a combination of a repulsive magnetic field from a hard drive atom mirror and the attractive potential produced by a charged disk patterned on the hard drive surface. We calculate a trap frequency of [29.7, 42.6, 62.8] kHz and a depth of [16.1, 21.8, 21.8] MHz for [133Cs, 87Rb, 40K], and discuss a simple loading scheme and a method for fabrication. This device provides a one-dimensional potential in a ring geometry that may be of interest to the study of trapped quantum degenerate one-dimensional gases.Comment: 4 pages, 2 figures; revised, including new calculations and further discussio

    Nonlinear Dynamics of a Bose-Einstein Condensate in a Magnetic Waveguide

    Full text link
    We have studied the internal and external dynamics of a Bose-Einstein condensate in an anharmonic magnetic waveguide. An oscillating condensate experiences a strong coupling between the center of mass motion and the internal collective modes. Due to the anharmonicity of the magnetic potential, not only the center of mass motion shows harmonic frequency generation, but also the internal dynamics exhibit nonlinear frequency mixing. We describe the data with a theoretical model to high accuracy. For strong excitations we test the experimental data for indications of a chaotic behavior.Comment: 4 pages, 4 figure

    Kelvin-Helmholtz instabilities at the sloshing cold fronts in the Virgo cluster as a measure for the effective ICM viscosity

    Full text link
    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intra-cluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and north-east of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities ≳\gtrsim 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e. in the presence or absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.Comment: Accepted for ApJ; 15 pages, 11 figures. A movie can be found here: http://www.hs.uni-hamburg.de/DE/Ins/Per/Roediger/research.html#Virgo-viscou

    Analysis, design, and test of acoustic treatment in a laboratory inlet duct

    Get PDF
    A suppression prediction program based on the method of modal analysis for spinning mode propagation in a circular duct was used in the analytical design of optimized, multielement, Kevlar bulk-absorber treatment configurations for an inlet duct. The NASA-Langley ANRL anechoic chamber using the spinning mode synthesizer as a sound source was used to obtain in-duct spinning mode measurements, radial mode measurements, and far-field traverses, as well as aerodynamic measurements. The measured suppression values were compared to predicted values, using the in-duct, forward-traveling, radial-mode content as the source for the prediction. The performance of the treatment panels was evaluated from the predicted and measured data. Although experimental difficulties were encountered at the design condition, sufficient information was obtained to confirm the expectation that it is the panel impedance components which are critical to suppression at a single frequency, not the particular construction materials. The agreement obtained between measurement and prediction indicates that the analytical program can be used as an accurate, reliable, and useful design tool

    Analytical and experimental studies of acoustic performance of segmented liners in a compressor inlet

    Get PDF
    The performance of axially segmented (phased) acoustic treatment liners in the inlet of a compressor was investigated. Topics discussed include: (1) the validation of a theoretical procedure to predict propagation and suppression characteristics of duct liners; (2) the in-duct measurement of spinning modes; (3) investigation of phased treatment designs; (4) high Mach inlet acoustic tests; and (5) an experimental investigation of inlet turbulence. The analytical prediction for the multi-segmented treatment was found to provide the correct order of magnitude of suppression and was generally within 50% of that determined experimentally. Refinements required to improve the correlation are identified. Suppression due to high subsonic Mach number flow effects was found to become significant above an average throat Mach number of 0.65 to 0.7 and 20 PNdB was achieved with an average throat Mach number in the range of 0.80 to 0.85. For the measured turbulence in the inlet, including the axial and circumferential turbulence intensities and the axial integral length scale, data are presented with and without an inlet screen showing that the screen reduced the turbulence intensities and that the BPF noise was reduced as a consequence
    • …
    corecore