9,223 research outputs found

    Multiplicity at the Stellar/Substellar Boundary in Upper Scorpius

    Get PDF
    We present the results of a high-resolution imaging survey of 12 brown dwarfs and very low mass stars in the closest (~145 pc) young (~5 Myr) OB association, Upper Scorpius. We obtained images with the Advanced Camera for Surveys/High Resolution Camera on HST through the F555W (V), F775W (i'), and F850LP (z') filters. This survey discovered three new binary systems, including one marginally resolved pair with a projected separation of only 4.9 AU, resulting in an observed binary fraction of 25+/-14% at separations >4 AU. After correcting for detection biases assuming a uniform distribution of mass ratios for q>0.6, the estimated binary fraction is 33+/-17%. The binary fraction is consistent with that inferred for higher-mass stars in Upper Sco, but the separation and mass ratio distributions appear to be different. All three low-mass binary systems in Upper Sco are tight (<18 AU) and of similar mass (q>0.6), consistent with expectations based on previous multiplicity studies of brown dwarfs and very low mass stars in the field and in open clusters. The implication is that the distinct separation and mass ratio distributions of low-mass systems are set in the formation process or at very young ages, rather than by dynamical disruption of wide systems at ages >5 Myr. Finally, we combine the survey detection limits with the models of Burrows et al. (1997) to show that there are no planets or very low-mass brown dwarfs with masses >10 M_J at projected separations >20 AU, or masses >5 M_J at projected separations >40 AU orbiting any of the low-mass (0.04-0.10 M_sun) objects in our sample.Comment: Accepted for publication in ApJ; 10 pages, 4 figures in emulateapj forma

    Parametric correlations versus fidelity decay: the symmetry breaking case

    Full text link
    We derive fidelity decay and parametric energy correlations for random matrix ensembles where time--reversal invariance of the original Hamiltonian is broken by the perturbation. Like in the case of a symmetry conserving perturbation a simple relation between both quantities can be established.Comment: 8 pages, 8 figure

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    Star formation environments and the distribution of binary separations

    Get PDF
    We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association. We find that for binary T Tauri stars closely associated to the early type stars in Upper Scorpius, the youngest subgroup of the OB association, the peak in the distribution of binary separations is at 90 A.U. For binary T Tauri stars located in the direction of an older subgroup, but not closely associated to early type stars, the peak in the distribution is at 215 A.U. A Kolmogorov-Smirnov test indicates that the two binary populations do not result from the same distibution at a significance level of 98%. Apparently, the same physical conditions which facilitate the formation of massive stars also facilitate the formation of closer binaries among low-mass stars, whereas physical conditions unfavorable for the formation of massive stars lead to the formation of wider binaries among low-mass stars. The outcome of the binary formation process might be related to the internal turbulence and the angular momentum of molecular cloud cores, magnetic field, the initial temperature within a cloud, or - most likely - a combination of all of these. We conclude that the distribution of binary separations is not a universal quantity, and that the broad distribution of binary separations observed among main-sequence stars can be explained by a superposition of more peaked binary distributions resulting from various star forming environments. The overall binary frequency among pre-main-sequence stars in individual star forming regions is not necessarily higher than among main-sequence stars.Comment: 7 pages, Latex, 4 Postscript figures; also available at http://spider.ipac.caltech.edu/staff/brandner/pubs/pubs.html ; accepted for publication in ApJ Letter

    Sleep-Dependent Memory Consolidation and Incremental Sentence Comprehension : Computational Dependencies during Language Learning as Revealed by Neuronal Oscillations

    Get PDF
    We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimize the consolidation of sequence-based knowledge (thewhen) and the establishment of semantic schemas of unordered items (thewhat) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain

    Two isoperimetric inequalities for the Sobolev constant

    Full text link
    In this note we prove two isoperimetric inequalities for the sharp constant in the Sobolev embedding and its associated extremal function. The first such inequality is a variation on the classical Schwarz Lemma from complex analysis, similar to recent inequalities of Burckel, Marshall, Minda, Poggi-Corradini, and Ransford, while the second generalises an isoperimetric inequality for the first eigenfunction of the Laplacian due to Payne and Rayner.Comment: 11 page

    Studying Flow Close to an Interface by Total Internal Reflection Fluorescence Cross Correlation Spectroscopy: Quantitative Data Analysis

    Full text link
    Total Internal Reflection Fluorescence Cross Correlation Spectroscopy (TIR-FCCS) has recently (S. Yordanov et al., Optics Express 17, 21149 (2009)) been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence only occurs for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions only provide rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian Dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. Firstly, Brownian Dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Secondly, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.Comment: 18 pages, 12 figure

    Minimally invasive repair of pectus excavatum using the Nuss technique in children and adolescents: Indications, outcomes, and limitations

    Get PDF
    AbstractBackgroundPectus excavatum (PE) is a common congenital deformity. The Nuss technique for minimally invasive repair of PE involves thoracoscopy-assisted insertion of a bar or plate behind the deformity to displace the sternum anteriorly. Our objective here was to clarify the indications and limitations of the Nuss technique based on a review of 70 patients.Materials and methodsA retrospective review of children managed at two centres identified 70 patients who had completed their growth and had their plate removed. Mean age was 13.8 years (range, 6–19 years). The reason for surgery was cosmetic disfigurement in 66 (95%) patients. The original Nuss technique was used in 63 patients, whereas 7 patients required an additional sub-xiphoid approach. Time to implant removal ranged from 8 months to 3 years.ResultsThe cosmetic outcome was considered satisfactory by the patients in 64 (91%) cases and by the surgeon in 60 (85.7%) cases. Major complications requiring further surgery occurred in 6 (8.5%) patients and consisted of haemothorax (n=2), chest wall sepsis (n=2, including 1 after implant removal), allergy (n=1), and implant displacement (n=1). Early or delayed minor complications occurred in 46 (65%) patients and resolved either spontaneously or after non-surgical therapy.DiscussionThe minimal scarring and reliably good outcomes support the widespread use of the Nuss technique in children and adolescents. Our complication rates (minor, 65%; and major, 8.5%) are consistent with previous publications. In our opinion, contra-indications to thoracoscopic PE correction consist of a history of cardio-thoracic surgery and the finding by computed tomography of a sternum-to-spine distance of less than 5cm or of sternum rotation greater than 35°. In these situations, we recommend a sub- and retro-xiphoid approach to guide implant insertion or a classic sterno-chondroplasty procedure.Level of evidenceLevel IV, retrospective descriptive cohort study
    • …
    corecore