8,659 research outputs found
Dark Matter Subhalos In the Fermi First Source Catalog
The Milky Way's dark matter halo is thought to contain large numbers of
smaller subhalos. These objects can contain very high densities of dark matter,
and produce potentially observable fluxes of gamma rays. In this article, we
study the gamma ray sources in the Fermi Gamma Ray Space Telescope's recently
published First Source Catalog, and attempt to determine whether this catalog
might contain a population of dark matter subhalos. We find that, while
approximately 20-60 of the catalog's unidentified sources could plausibly be
dark matter subhalos, such a population cannot be clearly identified as such at
this time. From the properties of the sources in the First Source Catalog, we
derive limits on the dark matter's annihilation cross section that are
comparably stringent to those derived from recent observations of dwarf
spheroidal galaxies.Comment: 11 pages, 9 figures V2: Minor errors in Figure 3 correcte
Active rendezvous between a low-earth orbit user spacecraft and the Space Transportation System (STS) shuttle
Active rendezvous of an unmanned spacecraft with the Space Transportation System (STS) Shuttle is considered. The various operational constraints facing both the maneuvering spacecraft and the Shuttle during such a rendezvous sequence are discussed. Specifically, the actively rendezvousing user spacecraft must arrive in the generic Shuttle control box at a specified time after Shuttle launch. In so doing it must at no point violate Shuttle separation requirements. In addition, the spacecraft must be able to initiate the transfer sequence from any point in its orbit. The four-burn rendezvous sequence incorporating two Hohmann transfers and an intermediate phasing orbit as a low-energy solution satisfying the above requirements are discussed. The general characteristics of the four-burn sequence are discussed, with emphasis placed on phase orbit altitude and delta-velocity requirements. The planning and execution of such a sequence in the operational environment are then considered. Factor crucial in maintaining the safety of both spacecraft, such as spacecraft separation and contingency analysis, are considered in detail
Analytical and experimental study of the dynamics of a single-tube counterflow boiler
Experimental and analytical study of dynamics of single tube counterflow boile
Steady-state and dynamic operating characteristics of a simulated three-loop space Rankine-cycle powerplant Summary report, 15 May 1964 - 1 May 1965
Steady state operating and dynamic response characteristics of simulated three-loop Rankine cycle space power conversion system of SNAP-8 TYP
No Indications of Axion-Like Particles From Fermi
As very high energy (~100 GeV) gamma rays travel over cosmological distances,
their flux is attenuated through interactions with the extragalactic background
light. Observations of distant gamma ray sources at energies between ~200 GeV
and a few TeV by ground-based gamma ray telescopes such as HESS, however,
suggest that the universe is more transparent to very high energy photons than
had been anticipated. One possible explanation for this is the existence of
axion-like-particles (ALPs) which gamma rays can efficiently oscillate into,
enabling them to travel cosmological distances without attenuation. In this
article, we use data from the Fermi Gamma Ray Space Telescope to calculate the
spectra at 1-100 GeV of two gamma ray sources, 1ES1101-232 at redshift z=0.186
and H2356-309 at z=0.165, and use this in conjunction with the measurements of
ground-based telescopes to test the ALP hypothesis. We find that the
observations can be well-fit by an intrinsic power-law source spectrum with
indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that
no ALPs or other exotic physics is necessary to explain the observed degree of
attenuation.Comment: 7 pages, 4 figures. v3: Matches published version, the analysis of
H2356-309 is revised, no change in conclusion
Are There Hints of Light Stops in Recent Higgs Search Results?
The recent discovery at the LHC by the CMS and ATLAS collaborations of the
Higgs boson presents, at long last, direct probes of the mechanism for
electroweak symmetry breaking. While it is clear from the observations that the
new particle plays some role in this process, it is not yet apparent whether
the couplings and widths of the observed particle match those predicted by the
Standard Model. In this paper, we perform a global fit of the Higgs results
from the LHC and Tevatron. While these results could be subject to
as-yet-unknown systematics, we find that the data are significantly better fit
by a Higgs with a suppressed width to gluon-gluon and an enhanced width to
gamma gamma, relative to the predictions of the Standard Model. After
considering a variety of new physics scenarios which could potenially modify
these widths, we find that the most promising possibility is the addition of a
new colored, charged particle, with a large coupling to the Higgs. Of
particular interest is a light, and highly mixed, stop, which we show can
provide the required alterations to the combination of gg and gamma gamma
widths.Comment: 6 pages, 5 figure
Probing Exotic Physics With Cosmic Neutrinos
Traditionally, collider experiments have been the primary tool used in
searching for particle physics beyond the Standard Model. In this talk, I will
discuss alternative approaches for exploring exotic physics scenarios using
high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used
to study interactions at energies higher, and over baselines longer, than those
accessible to colliders. In this way, neutrino astronomy can provide a window
into fundamental physics which is highly complementary to collider techniques.
I will discuss the role of neutrino astronomy in fundamental physics,
considering the use of such techniques in studying several specific scenarios
including low scale gravity models, Standard Model electroweak instanton
induced interactions, decaying neutrinos and quantum decoherence.Comment: 11 pages, 6 figures; For the proceedings of From Colliders To Cosmic
Rays, Prague, Czech Republic, September 7-13, 200
Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators
Copyright © 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 85 (2004) and may be found at http://link.aip.org/link/?APPLAB/85/3017/1Differential ellipsometric interrogation of surface plasmon (SP) resonances is a technique that gives ultrahigh sensitivity to refractive index changes, and it may provide the basis for chemical and biological sensors. In this study, a liquid crystal polarization modulator has been developed to provide such a differential technique. A refractive index sensitivity of 2×10–7 refractive index units is demonstrated, which is at least as sensitive as more established SP sensing techniques. The use of a liquid crystal modulator allows for low-voltage signal modulation and also feedback locking to zero. Possibly more important, it leads to pixelization for array sensing and for potential imaging
Dispersion of surface plasmon polaritons on short-pitch metal gratings
Ian R. Hooper and J. Roy Sambles, Physical Review B, Vol. 65, article 165432 (2002). "Copyright © 2002 by the American Physical Society."The dispersion of surface plasmon polaritons (SPPs) has been calculated for short-pitch metal gratings for various depths. For gratings with depths greater than their pitch very flat SPP bands are formed in the zero-order region of the spectrum which may be resonantly excited with radiation polarized with its electric field in the plane of incidence of the radiation, which also contains the grating vector. The dispersion curves of these modes evolve as deformations of the familiar shallow grating dispersion curve due to the opening of very large band gaps, and interactions of the SPP bands with both the light line and other SPP bands. Also presented are the dispersion curves for the equivalent modes excited by radiation having its plane of incidence perpendicular to the grating vector, but polarized with its electric field parallel to this grating vector. The full dispersion curve of these SPP bands for all orientations of the grating relative to the plane of incidence is also presented
- …